Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature alone won’t do the job; climate change threatens many tree species

24.01.2011
Global warming is already affecting the earth in a variety of ways that demand our attention. Now, research carried out at the Hebrew University of Jerusalem indicates that many tree species might become extinct due to climate change if no action is taken in time.

According to the research, trees which disperse their seeds by wind, such as pines and maples, will be unable to spread at a pace that can cope with expected climate changes.

The research, which focused on the ecological consequences of expected changes in the climate and the environment on tree spread, was conducted by Prof. Ran Nathan, head of the Alexander Silberman Institute of Life Science at the Hebrew University; his student, Nir Horvitz; and researchers from abroad.

Climate changes, which can be sensed already today and which are expected to continue in the next 50 years, include the increase of carbon dioxide concentration in the air and a reduction of surface wind speed in many areas. On the basis of earlier work, elevated concentration of carbon dioxide is expected to cause trees to produce many more seeds and to reach maturity earlier than under current conditions, hence speeding up their spread. On the other hand, the weakening of wind speed in certain areas should reduce spread rate of these trees. The balance between these opposing forces remained unknown.

Furthermore, it was unclear whether even the projected increase in wind speed in certain areas, together with the higher seed production and earlier maturation, will result in a fast enough spread of trees in order to be sufficient to match the climate changes.

These questions were examined in this study for the first time. Surprisingly, the results show that changes in wind speed, either the projected increase or decrease, have negligible effects on the rate of wind-driven spread of these species. The effects of increased seed production and earlier maturation is that which prevails, giving rise to faster spread in the future compared to current conditions. Still, this research showed that the faster spread predicted for these trees in the future will be much slower than the expected poleward shift of climate (temperature) ranges. Consequently, these tree species might not be able to withstand the climate change.

“Our research indicates that the natural wind-driven spread of many species of trees will increase, but will occur at a significantly lower pace than that which will be required to cope with the changes in surface temperature,” said Prof. Nathan. “This will raise extinction risk of many tree populations because they will not be able to track the shift in their natural habitats which currently supply them with favorable conditions for establishment and reproduction. As a result, the composition of different tree species in future forests is expected to change and their areas might be reduced, the goods and services that these forests provide for man might be harmed, and wide-ranging steps will have to be taken to ensure seed dispersal in a controlled, directed manner.”

The new research, published in the journal Ecology Letters is based on a unique, fully mechanistic model developed to predict trends in plant spread. This model is the first to consider how projected changes in biological and environmental factors would impact tree spread in future environments. Predictions which were made until now were founded on past trends and did not take into consideration the expected future changes in the key biological and environmental factors that determine plant spread.

In Israel, the research has bearing on various native tree species whose seeds are dispersed by the wind, such as Aleppo pine, Syrian maple and Syrian ash. The model that has been developed will be useful also in predicting the invasive spread of alien tree species, such as the tree of heaven, into Israeli natural habitats.

Trees with wind-dispersed seeds are mainly common in forests of North America and Eurasia. The current research points to the need to take human action to insure the dispersal of the seeds of these trees within the next half century, in view of the expected climate changes.

“It is important for those responsible for forest management in many parts of the world to understand that nature alone will not do the job,” said Prof. Nathan. “Human action will be required to ensure in a controlled manner the minimization of unexpected detrimental byproducts, and that those trees which are very important for global ecological processes will not become extinct,” he said. “These forests are important in many ways to man, including the supply of wood, the safeguarding of water quality, and the provision of recreation and tourism facilities.”

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904.

Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>