Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can naturally raised beef find its place in the industry?

As consumer demand for naturally raised beef continues to increase, researchers at the University of Illinois have discovered that naturally raised beef can be produced effectively for this niche market as long as a substantial premium is offered to cover additional production and transportation costs.

Naturally raised beef is produced without hormones or antibiotics, whereas traditional systems take advantage of technologies the industry offers such as ionophores like Rumensin® to improve feed efficiency and implants to improve gain and efficiency.

"Producers are asking many questions about the value of natural programs and the premiums needed to remain profitable," said Dan Faulkner, U of I professor of animal sciences. "Our goal was to find out the costs involved in natural systems focused on producing environmentally friendly, locally raised beef."

Researchers studied the effects of finishing management (confinement versus pasture) and production system (traditional versus naturally raised) on performance, carcass and economic characteristics in a group of early weaned Angus x Simmental steer calves at the Dixon Springs Agricultural Center in Simpson, Ill. The calves were fed on fescue pastures or confinement feedlots.

The study revealed that naturally raised steers can be produced effectively in either confinement or with a pasture finishing system, but they require a substantial premium of $110 with today's feed prices to justify the costs and returns.

Faulkner said that pasture finishing is $35 more profitable than confinement feeding using current feed prices, making it an attractive option for producers interested in raising locker beef for local markets with either natural or traditional production systems.

"I think this information will benefit smaller operations that would like to pursue a naturally raised market in a pasture finishing system, but may not be able to use a traditional confinement system," Faulkner said.

In addition, naturally raised beef in either pasture or confinement settings resulted in beef with higher quality grades.

"There continues to be more interest in naturally raised beef because organic beef standards are so high," Faulkner added. "We need to increase consumer education efforts because naturally raised beef is actually what many consumers are looking for these days."

Both organic and naturally raised steers do not receive hormones or antibiotics. The major difference between naturally raised beef and organic beef is that organic beef comes from cattle that are raised on organic pastures that have not been treated with chemicals or chemical fertilizers. In addition, these cattle can only be fed organic certified feeds.

Faulkner also differentiated pasture-fed beef from grass-fed beef.

"Grass-fed cattle cannot be fed any concentrate – they can only receive roughage," Faulkner said. "And that roughage must meet strict guidelines set by the USDA. On the other hand, pasture-fed cattle have access to a finishing diet and pasture."

Pasture-fed cattle have carcass and meat characteristics that are the same as traditionally finished cattle, he added. The meat characteristics of grass-fed cattle are quite different than the average consumer is used to eating.

Faulkner said naturally raised beef, regardless of finishing management, is a niche market that has great potential if consumers will pay premium prices.

"As producers, we need to be responsive to consumer demand," he said. "Currently, naturally raised beef is a very small percentage of the market. But it is a market that is growing at several hundred percent a year, and has been identified as a niche that consumers are very interested in."

This research, "Confinement vs. Pasture and Traditional vs. Naturally Raised Finishing Influences Performance, Carcass, and Economic Characteristics of Early-Weaned Steers," was published in The Professional Animal Scientist. Researchers include Faulkner, Dan Shike and Frank Ireland, all of the U of I.

Jennifer Shike | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>