Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can naturally raised beef find its place in the industry?

19.10.2010
As consumer demand for naturally raised beef continues to increase, researchers at the University of Illinois have discovered that naturally raised beef can be produced effectively for this niche market as long as a substantial premium is offered to cover additional production and transportation costs.

Naturally raised beef is produced without hormones or antibiotics, whereas traditional systems take advantage of technologies the industry offers such as ionophores like Rumensin® to improve feed efficiency and implants to improve gain and efficiency.

"Producers are asking many questions about the value of natural programs and the premiums needed to remain profitable," said Dan Faulkner, U of I professor of animal sciences. "Our goal was to find out the costs involved in natural systems focused on producing environmentally friendly, locally raised beef."

Researchers studied the effects of finishing management (confinement versus pasture) and production system (traditional versus naturally raised) on performance, carcass and economic characteristics in a group of early weaned Angus x Simmental steer calves at the Dixon Springs Agricultural Center in Simpson, Ill. The calves were fed on fescue pastures or confinement feedlots.

The study revealed that naturally raised steers can be produced effectively in either confinement or with a pasture finishing system, but they require a substantial premium of $110 with today's feed prices to justify the costs and returns.

Faulkner said that pasture finishing is $35 more profitable than confinement feeding using current feed prices, making it an attractive option for producers interested in raising locker beef for local markets with either natural or traditional production systems.

"I think this information will benefit smaller operations that would like to pursue a naturally raised market in a pasture finishing system, but may not be able to use a traditional confinement system," Faulkner said.

In addition, naturally raised beef in either pasture or confinement settings resulted in beef with higher quality grades.

"There continues to be more interest in naturally raised beef because organic beef standards are so high," Faulkner added. "We need to increase consumer education efforts because naturally raised beef is actually what many consumers are looking for these days."

Both organic and naturally raised steers do not receive hormones or antibiotics. The major difference between naturally raised beef and organic beef is that organic beef comes from cattle that are raised on organic pastures that have not been treated with chemicals or chemical fertilizers. In addition, these cattle can only be fed organic certified feeds.

Faulkner also differentiated pasture-fed beef from grass-fed beef.

"Grass-fed cattle cannot be fed any concentrate – they can only receive roughage," Faulkner said. "And that roughage must meet strict guidelines set by the USDA. On the other hand, pasture-fed cattle have access to a finishing diet and pasture."

Pasture-fed cattle have carcass and meat characteristics that are the same as traditionally finished cattle, he added. The meat characteristics of grass-fed cattle are quite different than the average consumer is used to eating.

Faulkner said naturally raised beef, regardless of finishing management, is a niche market that has great potential if consumers will pay premium prices.

"As producers, we need to be responsive to consumer demand," he said. "Currently, naturally raised beef is a very small percentage of the market. But it is a market that is growing at several hundred percent a year, and has been identified as a niche that consumers are very interested in."

This research, "Confinement vs. Pasture and Traditional vs. Naturally Raised Finishing Influences Performance, Carcass, and Economic Characteristics of Early-Weaned Steers," was published in The Professional Animal Scientist. Researchers include Faulkner, Dan Shike and Frank Ireland, all of the U of I.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>