Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three native aromatics indicated for use in Mediterranean extensive green roofs

03.02.2014
Study reports on use of grape marc compost, planting depth, irrigation frequency for xyrophytes

Green roofs are being studied as a means to increase vegetation and preserve aesthetics in old Mediterranean cities. In order to preserve ancient cities' local character and biodiversity, researchers are looking to native plant species that can withstand the low water environments that are necessary in lightweight green roof design.

Xerophytes--species of plants that have adapted to survive in environments with little water--fit well in green roof construction plans, creating lightweight roofs that don't compromise ancient buildings' structural concerns.

A research team in Athens explored the use of three Mediterranean aromatic xerophytes, Artemisia absinthium, Helichrysumitalicum, and H. orientale, for use in an extensive green roof design. The study, published in HortScience, also investigated the practice of using of locally produced grape marc compost to promote drought resistance, and looked at the effects of different planting depths and irrigation frequencies on the three aromatics.

According to the Maria Papafotiou from the Department of Crop Science at the Agricultural University of Athens, most Mediterranean cities are centered around their old nucleus, which in many cases is characterized as a historical heritage. "These cities lack areas that could be converted into conventional green spaces, and thus there is an increasing interest in green roof systems. Green roofs are still relatively uncommon in Mediterranean countries, although these areas would significantly benefit from the ecological and technical functions of this technology," Papafotiou explained.

The scientists planted rooted cuttings of the three aromatics in a green roof infrastructure they then placed on a fully exposed flat roof in Athens. Two types of substrates were used (grape marc compost:soil:perlite and peat:soil:perlite ) at two substrate depths, 7.5 cm (shallow) and 15 cm (deep). The team applied two irrigation frequencies throughout the study: sparse (5 or 7 days in shallow and deep substrate, respectively) and normal (3 or 5 days in shallow and deep substrate, respectively), and recorded plant growth from May to October.

Results showed that all three of the plant species were established successfully on the green roof under all experimental treatments, although Artemisia absinthium generally showed the greatest growth as indicated by the final diameter and height of the plants. "With A. absinthium, grape marc compost-amended substrate produced taller plants and larger plant diameter compared with peat-amended substrate, deep substrate produced larger plant diameter compared with shallow substrate, and normal irrigation produced taller plants compared with sparse irrigation," the researchers said. "In both Helichrysum species, we found there were interactions of the main factors in almost all growth parameters; therefore, the only conclusion we drew concerning factor effects was that irrigation frequency did not affect the diameter and the dry weight of H. italicum plants."

The researchers noted that a "remarkable result" was that shallow compost-amended substrate with sparse irrigation resulted in similar or even bigger plant growth of all plant species compared with deep peat-amended substrate with normal irrigation.

"We determined that all three aromatic species were suitable for use in Mediterranean extensive or semi-intensive green roofs, and additionally found that the use of grape marc compost in the substrate allowed for less water consumption and the reduction of substrate depth without restriction of plant growth at the establishment phase and the first period of drought," Papafotiou said.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/10/1327.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>