Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three native aromatics indicated for use in Mediterranean extensive green roofs

03.02.2014
Study reports on use of grape marc compost, planting depth, irrigation frequency for xyrophytes

Green roofs are being studied as a means to increase vegetation and preserve aesthetics in old Mediterranean cities. In order to preserve ancient cities' local character and biodiversity, researchers are looking to native plant species that can withstand the low water environments that are necessary in lightweight green roof design.

Xerophytes--species of plants that have adapted to survive in environments with little water--fit well in green roof construction plans, creating lightweight roofs that don't compromise ancient buildings' structural concerns.

A research team in Athens explored the use of three Mediterranean aromatic xerophytes, Artemisia absinthium, Helichrysumitalicum, and H. orientale, for use in an extensive green roof design. The study, published in HortScience, also investigated the practice of using of locally produced grape marc compost to promote drought resistance, and looked at the effects of different planting depths and irrigation frequencies on the three aromatics.

According to the Maria Papafotiou from the Department of Crop Science at the Agricultural University of Athens, most Mediterranean cities are centered around their old nucleus, which in many cases is characterized as a historical heritage. "These cities lack areas that could be converted into conventional green spaces, and thus there is an increasing interest in green roof systems. Green roofs are still relatively uncommon in Mediterranean countries, although these areas would significantly benefit from the ecological and technical functions of this technology," Papafotiou explained.

The scientists planted rooted cuttings of the three aromatics in a green roof infrastructure they then placed on a fully exposed flat roof in Athens. Two types of substrates were used (grape marc compost:soil:perlite and peat:soil:perlite ) at two substrate depths, 7.5 cm (shallow) and 15 cm (deep). The team applied two irrigation frequencies throughout the study: sparse (5 or 7 days in shallow and deep substrate, respectively) and normal (3 or 5 days in shallow and deep substrate, respectively), and recorded plant growth from May to October.

Results showed that all three of the plant species were established successfully on the green roof under all experimental treatments, although Artemisia absinthium generally showed the greatest growth as indicated by the final diameter and height of the plants. "With A. absinthium, grape marc compost-amended substrate produced taller plants and larger plant diameter compared with peat-amended substrate, deep substrate produced larger plant diameter compared with shallow substrate, and normal irrigation produced taller plants compared with sparse irrigation," the researchers said. "In both Helichrysum species, we found there were interactions of the main factors in almost all growth parameters; therefore, the only conclusion we drew concerning factor effects was that irrigation frequency did not affect the diameter and the dry weight of H. italicum plants."

The researchers noted that a "remarkable result" was that shallow compost-amended substrate with sparse irrigation resulted in similar or even bigger plant growth of all plant species compared with deep peat-amended substrate with normal irrigation.

"We determined that all three aromatic species were suitable for use in Mediterranean extensive or semi-intensive green roofs, and additionally found that the use of grape marc compost in the substrate allowed for less water consumption and the reduction of substrate depth without restriction of plant growth at the establishment phase and the first period of drought," Papafotiou said.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/10/1327.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>