Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three native aromatics indicated for use in Mediterranean extensive green roofs

03.02.2014
Study reports on use of grape marc compost, planting depth, irrigation frequency for xyrophytes

Green roofs are being studied as a means to increase vegetation and preserve aesthetics in old Mediterranean cities. In order to preserve ancient cities' local character and biodiversity, researchers are looking to native plant species that can withstand the low water environments that are necessary in lightweight green roof design.

Xerophytes--species of plants that have adapted to survive in environments with little water--fit well in green roof construction plans, creating lightweight roofs that don't compromise ancient buildings' structural concerns.

A research team in Athens explored the use of three Mediterranean aromatic xerophytes, Artemisia absinthium, Helichrysumitalicum, and H. orientale, for use in an extensive green roof design. The study, published in HortScience, also investigated the practice of using of locally produced grape marc compost to promote drought resistance, and looked at the effects of different planting depths and irrigation frequencies on the three aromatics.

According to the Maria Papafotiou from the Department of Crop Science at the Agricultural University of Athens, most Mediterranean cities are centered around their old nucleus, which in many cases is characterized as a historical heritage. "These cities lack areas that could be converted into conventional green spaces, and thus there is an increasing interest in green roof systems. Green roofs are still relatively uncommon in Mediterranean countries, although these areas would significantly benefit from the ecological and technical functions of this technology," Papafotiou explained.

The scientists planted rooted cuttings of the three aromatics in a green roof infrastructure they then placed on a fully exposed flat roof in Athens. Two types of substrates were used (grape marc compost:soil:perlite and peat:soil:perlite ) at two substrate depths, 7.5 cm (shallow) and 15 cm (deep). The team applied two irrigation frequencies throughout the study: sparse (5 or 7 days in shallow and deep substrate, respectively) and normal (3 or 5 days in shallow and deep substrate, respectively), and recorded plant growth from May to October.

Results showed that all three of the plant species were established successfully on the green roof under all experimental treatments, although Artemisia absinthium generally showed the greatest growth as indicated by the final diameter and height of the plants. "With A. absinthium, grape marc compost-amended substrate produced taller plants and larger plant diameter compared with peat-amended substrate, deep substrate produced larger plant diameter compared with shallow substrate, and normal irrigation produced taller plants compared with sparse irrigation," the researchers said. "In both Helichrysum species, we found there were interactions of the main factors in almost all growth parameters; therefore, the only conclusion we drew concerning factor effects was that irrigation frequency did not affect the diameter and the dry weight of H. italicum plants."

The researchers noted that a "remarkable result" was that shallow compost-amended substrate with sparse irrigation resulted in similar or even bigger plant growth of all plant species compared with deep peat-amended substrate with normal irrigation.

"We determined that all three aromatic species were suitable for use in Mediterranean extensive or semi-intensive green roofs, and additionally found that the use of grape marc compost in the substrate allowed for less water consumption and the reduction of substrate depth without restriction of plant growth at the establishment phase and the first period of drought," Papafotiou said.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/10/1327.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

nachricht Alfalfa loss? Annual ryegrass is a win
03.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>