Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nations That Sow Food Crops for Biofuels May Reap Less than Previously Thought

16.01.2009
Global yields of most biofuels crops, including corn, rapeseed and wheat, have been overestimated by 100 to 150 percent or more, suggesting many countries need to reset their expectations of agricultural biofuels to a more realistic level.

That’s according to a study led by Matt Johnston and Tracey Holloway of the University of Wisconsin-Madison Nelson Institute for Environmental Studies and Jon Foley of University of Minnesota, which drew on actual agricultural data from nearly 240 countries to calculate the potential yields of 20 different biofuels worldwide.

The analysis, publishing today (Jan. 13) in the open-access journal Environmental Research Letters, indicates the biofuels production potential in both developing and developed countries has often been exaggerated. Why? Because current yield estimates, most of which are based on data from the United States and Europe, don’t account for local differences in climate, soils, technology and other factors that influence agricultural outputs.

By offering an analysis of detailed, regional yield data that do encompass this variability, the scientists hope to empower wiser choices by countries about whether to invest in ethanol or biodiesel, which crops to plant, and how best to use existing farmlands. Although agricultural biofuels have been sharply criticized for their impacts on the environment and food supply, the reality is they’re here to stay, say the researchers, at least until alternatives such as cellulosic ethanol are developed. And that makes the availability of sound information critical.

“The biofuels industry has grown at an incredible rate. It’s a multibillion-dollar industry now,” says Johnston, a graduate student in the Nelson Institute’s Center for Sustainability and the Global Environment (SAGE). “So, what we’ve tried to do is move beyond the back-of-the-envelope calculation — the time for that is over. We need to look at better data sources and make more informed decisions.”

In the past, he explains, policymakers, companies and farmers have based decisions about biofuels in part on “yield tables,” which make simple side-by-side comparisons of the fuel yield per unit of land for various crops; for example, the amount of ethanol a hectare of sugarcane will generate versus a hectare of corn.

The problem with these widely quoted tables, says Johnston, is the original sources of the numbers usually aren’t cited, making it impossible to gauge their validity. What’s more, the tables typically select a single value — often from just one country or even a single farm — to represent the yield of each crop regardless of where it’s grown.

“Often these are very optimistic numbers and they’re chosen to promote biofuels,” says Johnston. “So they usually (represent) the highest-yield, best-case scenario.”

To take a more sober look, Johnston turned to a global agricultural database, developed at SAGE, which provides actual yields of 175 crops, circa the year 2000, at a resolution of roughly five miles by five miles across the entire globe. After tapping it for yields of 10 biodiesel crops, such as soybean, rapeseed and oil palm, and 10 ethanol feedstocks, including corn, rice and wheat, Johnston calculated and mapped the amount of biofuel that could be produced per hectare in every possible country by crop combination — some 3,000 in all.

To evaluate his numbers against published yield table values, he then computed a global average yield for each of the 20 fuels, as well as the average yields of each in both developed and developing nations as a whole.

What he found were large gaps between the yield table numbers and his own, especially for developing countries. For instance, while his calculation for the average yield of corn ethanol in developed countries matched well with current yield table estimates, the average yield of developing countries was nearly 100 percent lower.

Such disparities weren’t restricted to the developing world either. Canada, for example, is one of the world’s largest producers of rapeseed. Yet, Johnston calculated its average yield of rapeseed biodiesel at just 550 liters per hectare — nearly half the estimates in yield tables, and well below the average for other developed nations.

Researchers at SAGE and University of Minnesota plan next to compare yields of biofuels in areas with similar climates, and then study how differences in management practices, such as irrigation or fertilizer use, may be contributing to gaps in production. The idea is to help countries get the most from existing farmlands, so they’ll put less new land to the plow and can better balance investment in biofuels against other needs, such as food security. But first they just need better data.

“This is not a one-dimensional issue and just knowing the crop yields isn’t going to tell you what the best solution is,” says Holloway. “But if you’re going to be making land use decisions related to biofuels, it’s critical that you at least know what you’re going to get from a plot of land.”

All data from the study can be acquired from SAGE at http://www.sage.wisc.edu/energy/index.html. The paper’s other authors are Chris Kucharik, SAGE, and Chad Monfreda, Arizona State University.

Madeline Fisher | Newswise Science News
Further information:
http://www.wisc.edu
http://www.sage.wisc.edu/energy/index.html

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>