Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials in plant protection products and fertilisers

02.11.2012
Myth or soon a reality?

The use of nanomaterials in agriculture could, on the one hand, reduce cost and effort, increase efficiency and lead to more environmentally sound applications. On the other hand, it might also have a negative effect on microorganisms in the soil. This is concluded by the authors of a review article written within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64).

Although no plant protection products or fertilisers containing nanomaterials are available on the market as yet, nanomaterials are becoming an increasingly important issue in agriculture, particularly as additives or agents in fertilisers or plant protection products: The number of scientific publications and patents on nanomaterials in this area has increased exponentially since the turn of the millennium, according to a review article recently published by researchers from the Agroscope Reckenholz-Tänikon Research Station and the Federal Office for Agriculture (*). With around 70 articles published until now, it is still possible for researchers to gain an overview of the topic. The USA and Germany are leading the field with regard to patents, but most of the scientific articles have been written in Asian countries.

Often outside the traditional nano range
Approximately 40 percent of the publications deal with carbon-based nanomaterials, followed by titanium dioxide, silver, silicagel and aluminium. Nanomaterials can be integrated into formulations in different forms and states – from solid particles through to polymers and emulsions. It is noticeable that the material development is often based on natural and degradable basic substances. The nanomaterials used are often larger than 100 nanometres and therefore by definition lie outside the classical nano range. In new plant protection products, in particular, the nanomaterials often serve as an additive that helps to release the agent in a controlled manner.
1000-fold higher flux into soils
The potential improvement of plant protection products and fertilisers through nanomaterials is offset by their significantly higher flux into soils if nanomaterials are used. Experts currently predict that this rate could be as much as 1000 times higher than the load released from the atmosphere. Hence, soil organisms and crops would also be more exposed to these substances.

Companies in Switzerland are already required to declare any nanomaterials contained in new plant protection products that they wish to register. However, international principles of nano-specific risk assessment are still at the development stage. As part of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), the project NANOMICROPS (Effects of NANOparticles on beneficial soil MIcrobes and CROPS) is contributing to these efforts by developing ecotoxicological test systems for soil microorganisms and crops as well as making available analytical methods for quantifying nanomaterials in agriculturally significant environmental compartments such as soil and water.

(*) Alexander Gogos, Katja Knauer, and Thomas D. Bucheli (2012). Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry 60: 9781–9792

(available as a PDF from the SNSF; e-mail: com@snf.ch)

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.

www.nfp64.ch

Contact
Thomas Bucheli (Principal Investigator)
Agroscope Reckenholz-Tänikon Research Station
Reckenholzstrasse 191
CH-8046 Zurich
Tel. 044 377 73 42
E-mail: thomas.bucheli@art.admin.ch
Mark Bächer (Head of Knowledge Transfer NRP 64)
Life Science Communication AG
Reitergasse 11
CH-8021 Zurich
Tel.: 043 266 88 50
E-mail: mark.baecher@lscom.ch

Abteilung Kommunikation | idw
Further information:
http://www.snf.ch
http://www.nfp64.ch/

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>