Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials in plant protection products and fertilisers

02.11.2012
Myth or soon a reality?

The use of nanomaterials in agriculture could, on the one hand, reduce cost and effort, increase efficiency and lead to more environmentally sound applications. On the other hand, it might also have a negative effect on microorganisms in the soil. This is concluded by the authors of a review article written within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64).

Although no plant protection products or fertilisers containing nanomaterials are available on the market as yet, nanomaterials are becoming an increasingly important issue in agriculture, particularly as additives or agents in fertilisers or plant protection products: The number of scientific publications and patents on nanomaterials in this area has increased exponentially since the turn of the millennium, according to a review article recently published by researchers from the Agroscope Reckenholz-Tänikon Research Station and the Federal Office for Agriculture (*). With around 70 articles published until now, it is still possible for researchers to gain an overview of the topic. The USA and Germany are leading the field with regard to patents, but most of the scientific articles have been written in Asian countries.

Often outside the traditional nano range
Approximately 40 percent of the publications deal with carbon-based nanomaterials, followed by titanium dioxide, silver, silicagel and aluminium. Nanomaterials can be integrated into formulations in different forms and states – from solid particles through to polymers and emulsions. It is noticeable that the material development is often based on natural and degradable basic substances. The nanomaterials used are often larger than 100 nanometres and therefore by definition lie outside the classical nano range. In new plant protection products, in particular, the nanomaterials often serve as an additive that helps to release the agent in a controlled manner.
1000-fold higher flux into soils
The potential improvement of plant protection products and fertilisers through nanomaterials is offset by their significantly higher flux into soils if nanomaterials are used. Experts currently predict that this rate could be as much as 1000 times higher than the load released from the atmosphere. Hence, soil organisms and crops would also be more exposed to these substances.

Companies in Switzerland are already required to declare any nanomaterials contained in new plant protection products that they wish to register. However, international principles of nano-specific risk assessment are still at the development stage. As part of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), the project NANOMICROPS (Effects of NANOparticles on beneficial soil MIcrobes and CROPS) is contributing to these efforts by developing ecotoxicological test systems for soil microorganisms and crops as well as making available analytical methods for quantifying nanomaterials in agriculturally significant environmental compartments such as soil and water.

(*) Alexander Gogos, Katja Knauer, and Thomas D. Bucheli (2012). Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry 60: 9781–9792

(available as a PDF from the SNSF; e-mail: com@snf.ch)

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.

www.nfp64.ch

Contact
Thomas Bucheli (Principal Investigator)
Agroscope Reckenholz-Tänikon Research Station
Reckenholzstrasse 191
CH-8046 Zurich
Tel. 044 377 73 42
E-mail: thomas.bucheli@art.admin.ch
Mark Bächer (Head of Knowledge Transfer NRP 64)
Life Science Communication AG
Reitergasse 11
CH-8021 Zurich
Tel.: 043 266 88 50
E-mail: mark.baecher@lscom.ch

Abteilung Kommunikation | idw
Further information:
http://www.snf.ch
http://www.nfp64.ch/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>