Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanomaterials in plant protection products and fertilisers

Myth or soon a reality?

The use of nanomaterials in agriculture could, on the one hand, reduce cost and effort, increase efficiency and lead to more environmentally sound applications. On the other hand, it might also have a negative effect on microorganisms in the soil. This is concluded by the authors of a review article written within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64).

Although no plant protection products or fertilisers containing nanomaterials are available on the market as yet, nanomaterials are becoming an increasingly important issue in agriculture, particularly as additives or agents in fertilisers or plant protection products: The number of scientific publications and patents on nanomaterials in this area has increased exponentially since the turn of the millennium, according to a review article recently published by researchers from the Agroscope Reckenholz-Tänikon Research Station and the Federal Office for Agriculture (*). With around 70 articles published until now, it is still possible for researchers to gain an overview of the topic. The USA and Germany are leading the field with regard to patents, but most of the scientific articles have been written in Asian countries.

Often outside the traditional nano range
Approximately 40 percent of the publications deal with carbon-based nanomaterials, followed by titanium dioxide, silver, silicagel and aluminium. Nanomaterials can be integrated into formulations in different forms and states – from solid particles through to polymers and emulsions. It is noticeable that the material development is often based on natural and degradable basic substances. The nanomaterials used are often larger than 100 nanometres and therefore by definition lie outside the classical nano range. In new plant protection products, in particular, the nanomaterials often serve as an additive that helps to release the agent in a controlled manner.
1000-fold higher flux into soils
The potential improvement of plant protection products and fertilisers through nanomaterials is offset by their significantly higher flux into soils if nanomaterials are used. Experts currently predict that this rate could be as much as 1000 times higher than the load released from the atmosphere. Hence, soil organisms and crops would also be more exposed to these substances.

Companies in Switzerland are already required to declare any nanomaterials contained in new plant protection products that they wish to register. However, international principles of nano-specific risk assessment are still at the development stage. As part of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), the project NANOMICROPS (Effects of NANOparticles on beneficial soil MIcrobes and CROPS) is contributing to these efforts by developing ecotoxicological test systems for soil microorganisms and crops as well as making available analytical methods for quantifying nanomaterials in agriculturally significant environmental compartments such as soil and water.

(*) Alexander Gogos, Katja Knauer, and Thomas D. Bucheli (2012). Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry 60: 9781–9792

(available as a PDF from the SNSF; e-mail:

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.

Thomas Bucheli (Principal Investigator)
Agroscope Reckenholz-Tänikon Research Station
Reckenholzstrasse 191
CH-8046 Zurich
Tel. 044 377 73 42
Mark Bächer (Head of Knowledge Transfer NRP 64)
Life Science Communication AG
Reitergasse 11
CH-8021 Zurich
Tel.: 043 266 88 50

Abteilung Kommunikation | idw
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>