Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials in plant protection products and fertilisers

02.11.2012
Myth or soon a reality?

The use of nanomaterials in agriculture could, on the one hand, reduce cost and effort, increase efficiency and lead to more environmentally sound applications. On the other hand, it might also have a negative effect on microorganisms in the soil. This is concluded by the authors of a review article written within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64).

Although no plant protection products or fertilisers containing nanomaterials are available on the market as yet, nanomaterials are becoming an increasingly important issue in agriculture, particularly as additives or agents in fertilisers or plant protection products: The number of scientific publications and patents on nanomaterials in this area has increased exponentially since the turn of the millennium, according to a review article recently published by researchers from the Agroscope Reckenholz-Tänikon Research Station and the Federal Office for Agriculture (*). With around 70 articles published until now, it is still possible for researchers to gain an overview of the topic. The USA and Germany are leading the field with regard to patents, but most of the scientific articles have been written in Asian countries.

Often outside the traditional nano range
Approximately 40 percent of the publications deal with carbon-based nanomaterials, followed by titanium dioxide, silver, silicagel and aluminium. Nanomaterials can be integrated into formulations in different forms and states – from solid particles through to polymers and emulsions. It is noticeable that the material development is often based on natural and degradable basic substances. The nanomaterials used are often larger than 100 nanometres and therefore by definition lie outside the classical nano range. In new plant protection products, in particular, the nanomaterials often serve as an additive that helps to release the agent in a controlled manner.
1000-fold higher flux into soils
The potential improvement of plant protection products and fertilisers through nanomaterials is offset by their significantly higher flux into soils if nanomaterials are used. Experts currently predict that this rate could be as much as 1000 times higher than the load released from the atmosphere. Hence, soil organisms and crops would also be more exposed to these substances.

Companies in Switzerland are already required to declare any nanomaterials contained in new plant protection products that they wish to register. However, international principles of nano-specific risk assessment are still at the development stage. As part of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), the project NANOMICROPS (Effects of NANOparticles on beneficial soil MIcrobes and CROPS) is contributing to these efforts by developing ecotoxicological test systems for soil microorganisms and crops as well as making available analytical methods for quantifying nanomaterials in agriculturally significant environmental compartments such as soil and water.

(*) Alexander Gogos, Katja Knauer, and Thomas D. Bucheli (2012). Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry 60: 9781–9792

(available as a PDF from the SNSF; e-mail: com@snf.ch)

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.

www.nfp64.ch

Contact
Thomas Bucheli (Principal Investigator)
Agroscope Reckenholz-Tänikon Research Station
Reckenholzstrasse 191
CH-8046 Zurich
Tel. 044 377 73 42
E-mail: thomas.bucheli@art.admin.ch
Mark Bächer (Head of Knowledge Transfer NRP 64)
Life Science Communication AG
Reitergasse 11
CH-8021 Zurich
Tel.: 043 266 88 50
E-mail: mark.baecher@lscom.ch

Abteilung Kommunikation | idw
Further information:
http://www.snf.ch
http://www.nfp64.ch/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>