Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researchers Find Boron Facilitates Stem Cell Growth and Development in Corn

26.08.2014

Results could lead to advancements in corn crop yields and farming techniques

Boron deficiency is one of the most widespread causes of reduced crop yield. Missouri and the eastern half of the United States are plagued by boron deficient soil and, often, corn and soybean farmers are required to supplement their soil with boron; however, little is known about the ways in which corn plants utilize the essential nutrient.

Now, researchers at the University of Missouri have found that boron plays an integral role in development and reproduction in corn plants. Scientists anticipate that understanding how corn uses the nutrient can help farmers make informed decisions in boron deficient areas and improve crop yields.

“Boron deficiency was already known to cause plants to stop growing, but our study showed that a lack of boron actually causes a problem in the meristems, or the stem cells of the plant,” said Paula McSteen, associate professor in the Division of Biological Sciences and a researcher in the Bond Life Sciences Center at MU. “That was completely unknown before. Through a series of experiments involving scientists from several disciplines at MU, we were able to piece together the puzzle and reach a new conclusion.”

Meristems comprise the growing points for each plant, and every organ in the plant is developed from these specialized stem cells. Insufficient boron causes these growing points to disintegrate, affecting corn tassels and kernels adversely. When tassels are stunted, crop yields are reduced, McSteen said.

The research evaluated a group of plants stunted by its ability to grow tassels. Kim Phillips, a graduate student in McSteen’s lab, mapped the corn plant’s genome and found that a genetic mutation stunted tassel growth because it was unable to transport boron across the plant membranes, inhibiting further growth in the plants.

Amanda Durbak, a post-doctoral fellow in the College of Arts and Science at MU, also helped prove boron’s usefulness to meristems. She treated two groups of tassel-less corn, one with a boron fertilizer and the other with only water. The group that was treated with boron grew normally, while the group treated with water withered.

Further testing revealed that, at the cellular level, the affected plants’ meristems had altered pectin which is strengthened with boron and stabilizes the plant cell. Without the pectin, plant meristems disintegrate.

“By using various techniques and expertise at MU, including genomics, translational experiments with frog eggs, research in the field, cellular testing, and evaluations at the MU Research Reactor Analytical Chemistry facility and at MU Plant and Soil Analysis Facility, the study team drew conclusions that will help corn producers make informed decisions about raising crops in boron deficient zones,” McSteen said.

Researchers at the University of Georgia and at California State University, Long Beach also contributed to this study. The paper, “Transport of boron by the tassel-less 1 aquaporin is critical for vegetative and reproductive development in maize,” was published in The Plant Cell and was funded in part by the National Science Foundation.

Editor’s Note: For a longer version of this story, please visit: “Critical transport: Bond LSC team finds boron vital for plant stem cells, corn reproduction.”

For related video, please visit: https://www.youtube.com/watch?v=8gpYwS4wO8Y.

Jeff Sossamon | Eurek Alert!
Further information:
http://munews.missouri.edu/news-releases/2014/0825-mu-researchers-find-boron-facilitates-stem-cell-growth-and-development-in-corn/

Further reports about: Cell Corn Development Researchers Stem crop decisions deficiency farmers meristems nutrient tassels

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>