Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU grad student simulates 100 years of farming to measure agriculture's impact on land and water quality

05.11.2010
Estimating the long-term impact of agriculture on land is tricky when you don't have much information about what a field was like before it was farmed. Some fields in Missouri started producing crops more than a century ago—long before anyone kept detailed records about the physical and chemical properties of the soil in a field.

Researchers can't go back in time to revisit old fields in their pristine state, but a University of Missouri graduate student did perhaps the next best thing, using a detailed computer model to simulate, year-by-year, the effects of 100 years of farming on claypan soils.

This can help determine the impact of certain conservation practices on farmland's crop yields and soil and water quality, said Ashish Mudgal, who recently completed his doctorate in soil science at MU.

Mudgal took detailed measurements of the soil properties of two 80-acre claypan fields in Missouri—a never-farmed native prairie managed by MU and a field that had been under cultivation for more than a century and is currently managed by the USDA's Agricultural Research Service (ARS). These served as "before" and "after" snapshots to calibrate the model. He also made use of satellite images and aerial photographs taken between 1930 and 1990.

Mudgal incorporated the data into a model developed by researchers at Texas A&M University called APEX (Agricultural Policy Environment eXtender). The simulation estimated changes in runoff, erosion, and the flow of sediment, nutrients and herbicides.

After 100 simulated years of row-crop farming, the model showed an 82 percent increase in the average annual amount of the herbicide atrazine in runoff. Corn yields declined by 39 percent and soybean yields fell by 75 percent.

"These results show that the restoration of agricultural lands would be beneficial not only to enhance crop yields but also to reduce nonpoint-source pollution," Mudgal said.

The study also indicates that on claypan soils, the land that often causes the most environmental challenges when farmed tends to be less productive as well.

Findings from simulations like this can help farmers, policymakers and conservation agents make informed decisions about best practices for managing farmland to reduce the environmental impact and enhance productivity.

The study was funded in part by the USDA's Conservation Effects Assessment Project (CEAP), a long-range national effort to measure the impact of conservation practices and programs on agricultural land and water quality.

Programs such as the USDA's Conservation Reserve Program provide farmers and ranchers financial incentives to retire areas of farmland for a certain length of time and/or implement conservation practices such as terraces, hedges of native grasses and plant buffers that filter nutrients, sediment and other pollutants from runoff.

Conservation practices can't replace soil that has been lost over time, but they can return properties such as the soil's water infiltration capacity to something closer to the original state.

Through studies such as Mudgal's, CEAP seeks to devise scientifically sound tools to gauge the effectiveness of conservation practices, which are designed to control erosion, maintain soil productivity, protect watersheds and enhance wildlife habitat.

This can provide guidance for bringing retired land back into production and for targeting conservation efforts where they can do the most good, Mudgal said.

Mudgal's faculty advisers were Claire Baffaut, an ARS research hydrologist based at MU, and Stephen Anderson, MU professor of soil science.

Curt Wohleber | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>