Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientist helps map potato genome; move will improve crop yield

29.09.2009
It's been cultivated for at least 7,000 years and spread from South America to grow on every continent except Antarctica. Now the humble potato has had its genome sequenced.

"The potato is the most important vegetable worldwide," said Robin Buell, an MSU associate professor of plant biology. She was part of the consortium that released the first draft sequence of the potato genome. "This first draft that is being released will help breeders improve yield, quality, disease resistance and nutritional value."

The Potato Genome Sequencing Consortium, an international team of 39 scientists from 14 countries, began work on the potato genome project in 2006. The complete sequence is estimated to be 840 million base pairs, about one-quarter the size of the human genome. The draft sequence, which covers 95 percent of potato genes, is available at http://www.potatogenome.net and will be updated over the next six months.

Potatoes are members of the Solanaceae family, as are tomatoes, peppers, eggplant, petunias and tobacco. Buell, along with Dave Douches, an MSU crop and soil sciences professor, is leading a $5.4 million U.S. Department of Agriculture grant research project to improve the quality, yield, drought tolerance and disease resistance of potatoes and tomatoes. Known as the SolCAP project, the research aims to use emerging DNA sequence knowledge with basic research data to improve tomato and potato varieties.

"The timing of the release of the potato draft sequence is nice for the SolCAP project," Douches said. "We're combining genetics and breeding, so having a draft of the genome will help us find genetic markers for desirable traits in potatoes, which will make breeding more precise."

Buell is determining which genes are expressed in specific potato plant tissue to better understand the tuber's growth and development.

Buell's potato genome sequencing research is funded by the National Science Foundation and was done in collaboration with Chris Town, of the J. Craig Venter Institute, and Jiming Jiang, of the University of Wisconsin. The research of Buell and Douches also is funded by the Michigan Agricultural Experiment Station.

A complete list of the scientists who worked on the potato genome is available at http://www.potatogenome.net/index.php/Members.

In 2007, more than 309 million tons of potatoes were produced around the world. China is the top global potato market, consuming about 47.5 million tons of potatoes in 2005. Belarusians are the leaders when it comes to savoring spuds, each eating an average of nearly 400 pounds of potatoes per year. The United States consumed slight more than 17 million tons of potatoes in 2005, which makes it the world's fourth largest potato consumer. Each person in the United States eats more than 119 pounds of potatoes per year.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.potatogenome.net
http://www.msu.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>