Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientist helps map potato genome; move will improve crop yield

29.09.2009
It's been cultivated for at least 7,000 years and spread from South America to grow on every continent except Antarctica. Now the humble potato has had its genome sequenced.

"The potato is the most important vegetable worldwide," said Robin Buell, an MSU associate professor of plant biology. She was part of the consortium that released the first draft sequence of the potato genome. "This first draft that is being released will help breeders improve yield, quality, disease resistance and nutritional value."

The Potato Genome Sequencing Consortium, an international team of 39 scientists from 14 countries, began work on the potato genome project in 2006. The complete sequence is estimated to be 840 million base pairs, about one-quarter the size of the human genome. The draft sequence, which covers 95 percent of potato genes, is available at http://www.potatogenome.net and will be updated over the next six months.

Potatoes are members of the Solanaceae family, as are tomatoes, peppers, eggplant, petunias and tobacco. Buell, along with Dave Douches, an MSU crop and soil sciences professor, is leading a $5.4 million U.S. Department of Agriculture grant research project to improve the quality, yield, drought tolerance and disease resistance of potatoes and tomatoes. Known as the SolCAP project, the research aims to use emerging DNA sequence knowledge with basic research data to improve tomato and potato varieties.

"The timing of the release of the potato draft sequence is nice for the SolCAP project," Douches said. "We're combining genetics and breeding, so having a draft of the genome will help us find genetic markers for desirable traits in potatoes, which will make breeding more precise."

Buell is determining which genes are expressed in specific potato plant tissue to better understand the tuber's growth and development.

Buell's potato genome sequencing research is funded by the National Science Foundation and was done in collaboration with Chris Town, of the J. Craig Venter Institute, and Jiming Jiang, of the University of Wisconsin. The research of Buell and Douches also is funded by the Michigan Agricultural Experiment Station.

A complete list of the scientists who worked on the potato genome is available at http://www.potatogenome.net/index.php/Members.

In 2007, more than 309 million tons of potatoes were produced around the world. China is the top global potato market, consuming about 47.5 million tons of potatoes in 2005. Belarusians are the leaders when it comes to savoring spuds, each eating an average of nearly 400 pounds of potatoes per year. The United States consumed slight more than 17 million tons of potatoes in 2005, which makes it the world's fourth largest potato consumer. Each person in the United States eats more than 119 pounds of potatoes per year.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.potatogenome.net
http://www.msu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>