Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular technique advances soybean rust resistance research

17.05.2011
A new tool is available to select for soybean rust resistance in breeding populations, said Glen Hartman, University of Illinois professor of crop sciences and USDA-ARS scientist.

Hartman and his team of researchers successfully used quantitative polymerase chain reaction (Q-PCR) assays to assess fungal DNA in soybean leaf tissue to quantify the level of resistance in individual plants with resistance to soybean rust.

"This is not a new technique," Hartman said. "But it is a new tool for use in soybean rust resistance breeding, which has typically used phenotyping or visual assessment to measure resistance. We discovered that we can perform more precise and quicker assessments using this molecular technique."

Visual assessment is subject to interpretation and is not an exact science, Hartman said. However, Q-PCR allows for exact enumeration of fungal DNA in the tissue. This is particularly helpful when plants show similar visual symptoms, but colonization levels vary based on fungal DNA levels.

... more about:
»DNA »Hartman »Molecular Target »Q-PCR »gray area »soybean

"The eye can easily tell us if it's a plus or minus for qualitative resistance, but Q-PCR tells us the quantitative resistance or the gray that lies between the plus and minus," Hartman added.

Often qualitative resistance doesn't last as long as quantitative resistance because it involves a single gene. Pathogens can overcome a single gene more easily, putting soybean breeders right back to where they started with a susceptible reaction, he said.

"In quantitative resistance where multiple genes are working together to form resistance, breeders have to distinguish the gray area between susceptible and resistant," Hartman said. "It takes a lot to do that visually with your eye. You can look at samples under a microscope and take multiple measurements But, it's hard and time consuming, particularly when you are working with breeding populations and hundreds of samples."

Hartman said this technique will be useful for plant breeders trying to breed soybeans for resistance to soybean rust.

"We believe Q-PCR will save time and be more precise," he said. "The precision part is very important. The more precise you can be, knowing exactly what the line is reacting to, will lead to more precise mapping of the quantitative resistance genes."

The mapping of this particular quantitative resistance is very important to breeders selecting for rust resistance, Hartman said.

"It's a numbers game," he said. "In developing soybean cultivars, a large number of lines need to be evaluated so many inferior lines have to be discarded. In terms of breeding for soybean rust resistance, this technique can help determine which lines are more resistant to rust when it comes to the gray areas or quantitative resistance."

This research, "Comparisons of Visual Rust Assessments and DNA Levels of Phakopsora pachyrhizi in Soybean Genotypes Varying in Rust Resistance," was published in the April 2011 issue of Plant Disease. Other researchers include Chandra Paul and Curt Hill of the U of I Department of Crop Sciences. This research was supported by the United Soybean Board and the Soybean Diseases Biotechnology Center at the U of I.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: DNA Hartman Molecular Target Q-PCR gray area soybean

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>