Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular technique advances soybean rust resistance research

17.05.2011
A new tool is available to select for soybean rust resistance in breeding populations, said Glen Hartman, University of Illinois professor of crop sciences and USDA-ARS scientist.

Hartman and his team of researchers successfully used quantitative polymerase chain reaction (Q-PCR) assays to assess fungal DNA in soybean leaf tissue to quantify the level of resistance in individual plants with resistance to soybean rust.

"This is not a new technique," Hartman said. "But it is a new tool for use in soybean rust resistance breeding, which has typically used phenotyping or visual assessment to measure resistance. We discovered that we can perform more precise and quicker assessments using this molecular technique."

Visual assessment is subject to interpretation and is not an exact science, Hartman said. However, Q-PCR allows for exact enumeration of fungal DNA in the tissue. This is particularly helpful when plants show similar visual symptoms, but colonization levels vary based on fungal DNA levels.

... more about:
»DNA »Hartman »Molecular Target »Q-PCR »gray area »soybean

"The eye can easily tell us if it's a plus or minus for qualitative resistance, but Q-PCR tells us the quantitative resistance or the gray that lies between the plus and minus," Hartman added.

Often qualitative resistance doesn't last as long as quantitative resistance because it involves a single gene. Pathogens can overcome a single gene more easily, putting soybean breeders right back to where they started with a susceptible reaction, he said.

"In quantitative resistance where multiple genes are working together to form resistance, breeders have to distinguish the gray area between susceptible and resistant," Hartman said. "It takes a lot to do that visually with your eye. You can look at samples under a microscope and take multiple measurements But, it's hard and time consuming, particularly when you are working with breeding populations and hundreds of samples."

Hartman said this technique will be useful for plant breeders trying to breed soybeans for resistance to soybean rust.

"We believe Q-PCR will save time and be more precise," he said. "The precision part is very important. The more precise you can be, knowing exactly what the line is reacting to, will lead to more precise mapping of the quantitative resistance genes."

The mapping of this particular quantitative resistance is very important to breeders selecting for rust resistance, Hartman said.

"It's a numbers game," he said. "In developing soybean cultivars, a large number of lines need to be evaluated so many inferior lines have to be discarded. In terms of breeding for soybean rust resistance, this technique can help determine which lines are more resistant to rust when it comes to the gray areas or quantitative resistance."

This research, "Comparisons of Visual Rust Assessments and DNA Levels of Phakopsora pachyrhizi in Soybean Genotypes Varying in Rust Resistance," was published in the April 2011 issue of Plant Disease. Other researchers include Chandra Paul and Curt Hill of the U of I Department of Crop Sciences. This research was supported by the United Soybean Board and the Soybean Diseases Biotechnology Center at the U of I.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: DNA Hartman Molecular Target Q-PCR gray area soybean

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>