Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modifying Rice Crops to Resist Herbicide Prompts Weedy Neighbors’ Growth Spurt

24.09.2013
Study Shows One Method Gives Weeds Fitness Benefits Even Without Herbicide Trigger

Rice containing an overactive gene that makes it resistant to a common herbicide can pass that genetic trait to weedy rice, prompting powerful growth even without a weed-killer to trigger the modification benefit, new research shows.

Previously, scientists have found that when a genetically modified trait passes from a crop plant to a closely related weed, the weed gains the crop’s engineered benefit – resistance to pests, for example – only in the presence of the offending insects.

This new study is a surprising example of gene flow from crops to weeds that makes weeds more vigorous even without an environmental trigger, researchers say.

The suspected reason: This modification method enhances a plant’s own growth control mechanism, essentially making it grow faster – an attractive trait in crops but a recipe for potential problems with weedy relatives that could out-compete the crop.

“Our next question is whether this method of enhancing plant growth could be developed for any crop. We want to know whether growers could get higher yields in the crop and then, if it happened to cross with a related weed, whether it might make the weed more prolific as well,” said Allison Snow, professor of evolution, ecology and organismal biology at The Ohio State University and a lead author of the paper.

“It’s unusual for any transgene to have such a positive effect on a wild relative and even more so for herbicide resistance,” she said. “But we think we know why: It’s probably because the pathway regulated by this gene is so important to the plant.”

The work is the result of Snow’s longtime collaboration with senior author Bao-Rong Lu, a professor at Fudan University in Shanghai. Their publication appears online in the journal New Phytologist.

The weed-killer glyphosate, sold under the brand name Roundup, kills plants by inhibiting a growth-related pathway activated by the epsps gene. Biotech companies have inserted mutated forms of a similar gene from microbes into crop plants, producing “Roundup Ready” corn and soybeans that remain undamaged by widespread herbicide application.

But in this study, the researchers used a different method, boosting activation of the native epsps gene in rice plants – a process called overexpressing – to give the plants enough strength to survive an application of herbicide. Because companies that genetically modify commercial crops don’t fully disclose their methods, Snow and her colleagues aren’t sure how prevalent this method might be, now or in the future.

“This is a relatively new way to get a trait into a crop: taking the plant’s own gene and ramping it up,” Snow said. “We don’t know yet if our findings are going to be generalizable, but if they are, it’s definitely going to be important.”

To overexpress the native gene in rice, the scientists attached a promoter to it, giving the plant an extra copy of its own gene and ensuring that the gene is activated at all times.

The researchers conducted tests in rice and four strains of a relative of the same species, weedy rice, a noxious plant that infests rice fields around the world. By crossing genetically altered herbicide-resistant rice with weedy rice to mimic what happens naturally in the field, the researchers created crop-weed hybrids that grew larger and produced more offspring than unaltered counterparts – even without any herbicide present.

In regulated field experiments, the hybrids containing the overexpressed gene produced 48 percent to 125 percent more seeds per plant than did hybrid plants with no modified genes. They also had higher concentrations of a key amino acid, greater photosynthetic rates and better fledgling seed growth than controls – all presumed signs of better fitness in evolutionary terms.

“Fitness is a hard thing to measure, but you can conclude that if a gene gives you a lot more seeds per plant compared to controls, it’s likely to increase the plants’ fitness because those genes would be represented at a higher percentage in future generations,” Snow said.

When Snow and Lu set out to study this new genetic engineering method, they didn’t know what to expect.

“Our colleagues developed this novel transgenic trait in rice and we didn’t know if it would have a fitness benefit, or a cost, or be neutral,” Snow said. “With most types of herbicide resistant genes, there’s no benefit to a wild plant unless the herbicide is sprayed. A lot of transgenes in crop plants are either selectively neutral in wild plants or, if they have a benefit, it depends on environmental factors like insects, diseases or herbicides being present.”

Snow has a history in this area of research. She has found that genes from crop plants can persist in related weeds over many generations. In 2002, she led a study that was the first to show that a gene artificially inserted into crop plants to fend off pests could migrate to weeds in a natural environment and make the weeds stronger. She also has served on national panels that monitor and make recommendations about the release of genetically engineered species into the environment.

She is interested in identifying new possible outcomes of the growth of crop-weed hybrids that contain genetic modifications, but she doesn’t take sides about possible risks and benefits of genetically modified crops.

“It’s not always the end of the world if a weed starts to become a lot more common after acquiring a new trait – there may be effective ways to manage that weed,” Snow said. “You just can’t make sweeping generalizations about genetic engineering, and knowledge from ecological studies like ours can help inform risk assessment and biosafety oversight.”

This work was supported by the Natural Science Foundation of China, the “973” program, the National Program of Development of Transgenic New Species of China and Ohio State University.

Additional co-authors are Wei Wang, Hui Xia, Xiao Yang, Ting Xu, Hong Jiang Si and Xing Xing Cai of Fudan University, and Feng Wang and Jun Su of Fujian Academy of Agricultural Sciences in Fuzhou, China.

Contact: Allison Snow, (614) 292-3445; Snow.1@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Allison Snow | EurekAlert!
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>