Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milling machines could consume less without their productivity being compromised

20.12.2011
There are few places in the world where the machine tool has more tradition than in the Basque Country. And in such a competitive market, how is one to draw attention? By thinking differently, just as Juanjo Zulaika has been able to demonstrate.

This Tecnalia researcher set out to design an eco-efficient, high-volume milling machine, but without compromising its productivity: “Normally, the aim of these designs is to make the machine as solid as possible. But that is not the case in my model, and this signifies a profound change in this area.” He has reduced mass in order to give priority to dynamism, and in this way has cut consumption by 20%. He submitted his thesis at the University of the Basque Country (UPV/EHU) under the title Metodología para la concepción de fresadoras de gran volúmen productivas y ecoeficientes (Methodology for the conception of eco-efficient, high-volume production milling machines). This innovative approach has also been applauded by the highest-impact journal in the sector (International Journal of Machine Tools and Manufacture).

Large-volume milling machines are about three or four metres high and 10-15 metres long. They are used to produce large-sized parts, like supports for railway carriages (‘boogies’), for example. Equipment of this type tends to be heavy and unwieldy, difficult to move, and that is why it consumes a large amount of energy in these tasks. That is what Zulaika’s research has focussed on. For example, if the machine has a column weighing five tonnes, he has set about making it lighter and leaving it at three or four tonnes: “If I reduce the weight of the machine’s components by 20%, the energy reduction is proportional.”

Productivity, the starting point

There have basically been two limits on these weight reduction tasks: the risk of weakening the components too much and having to maintain the same productivity. There lies the crux of the research, since Zulaika has created an innovative simulation model to establish and find out these limits in advance. It is innovative, because the aim is productivity, and all the rest is built up on the basis of this: “I have incorporated the dynamics of the machine and that of the process into an inclusive model. I decide what the aim is as regards productivity, and the model tells me what limits the milling machine has. It is as if a doctor were to diagnose the machine: we are told which components are too robust and which are too weak.”

What is more, this researcher has applied the simulation model he has created to a real milling machine, thus verifying its usefulness. Specifically, the model has enabled him to develop a new machine four metres high for a company in the sector. The results have exceeded expectations.

Firstly, Zulaika carried out a diagnosis of this new milling machine, and to do so, took as the starting point the level of productivity of the machine used previously at this company. Following the indications of the simulation model, he reduced the weight of the parts of the machine that were too robust and reinforced the weakened ones, thus achieving a 20% reduction in its mass. But he also added shock absorbers to cushion the jolts between the components when the milling machine is working. Thanks to this complementary measure, productivity has not only been maintained but also increased. “The aim in itself was to maintain productivity and to cut energy consumption; that is sufficient for any company. But in the end, when the two measures were combined, the results were better than expected,” explains the researcher. In comparison with the machine previously used at this company, productivity has increased 100% in the best tests. There they now work with the new optimised milling machine made possible by the simulation model.

About the author

Juan José Zulaika-Muniain (Zarautz, Basque Country, 1971) is a graduate in Industrial Engineering (University of Navarre) and a Doctor in Mechanical Engineering (UPV/EHU). He wrote up his PhD thesis under the supervision of Norberto López de Lacalle-Marcaide, Professor of Manufacturing at the UPV/EHU. The research was done at Tecnalia’s Industrial Systems Unit. Work was also done in collaboration with the company Nicolás Correa S.A. of Burgos (Spain). Zulaika currently works as a researcher at Tecnalia.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>