Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms in the ground don’t slack off in winter

16.11.2010
It is known that soil microorganisms can maintain some activity during the cold winter months. Scientist at Swedish University of Agricultural Sciences (SLU) and Umeå University in Sweden have now shown that the microorganisms in frozen soils are much more viable than previously anticipated and also has large potential for growth.

In northern forest ecosystems, there is a great deal of carbon stored in the ground. The degradation of this carbon supply is a crucial component in computational models used to describe the effects of future climate changes.

In recent years it has been noticed that the winter half of the year can also have a great impact on the carbon balance of forests, as microorganisms (fungi and bacteria) continue to degrade organic carbon despite freezing temperatures and frozen ground. Just how microorganisms go about breaking down organic carbon under such adverse conditions has largely been unknown, which has rendered it difficult to carry out reliable calculations of a forest’s carbon balance in wintertime.

“The results of previous studies have been interpreted as meaning that microorganisms in frozen ground cannot grow but merely give off a certain amount of carbon dioxide. A research team at SLU in Umeå and at Umeå University has now shown that this is not the case. Instead, the capacity of microorganisms to grow in frozen ground is astonishingly similar to that of the summer half of the year, although the growth rate is lower,” says Mats Öquist from SLU, who directed the study.

These findings are being published this week in the prestigious journal PNAS, published by the American Academy of Sciences.

The study was performed in close collaboration between Mats Öquist, Mats Nilsson, and Stina Harrysson Drotz at SLU, and Jürgen Schleucher and Tobias Sparrman (Umeå University).

In previous publications these scientists have established that the activity of microorganisms in frozen ground is mainly regulated by access to unfrozen water, and they have identified what characteristics in the ground govern the availability of water.

These studies have been possible thanks to a method for monitoring unfrozen water using nuclear magnetic resonance spectroscopy (NMR), a method that was developed by the team. In combination with the latest findings about the capacity of microorganisms to exploit organic materials and grow in frozen ground, this research makes it possible to develop more reliable computational models of the carbon balance of the northern hemisphere.

Contact: Mats Öquist, phone: +46 (0)90-786 8525, mats.oquist@sek.slu.se
Pressofficer Susanne Sjöberg; susanne.sjoberg@amd.slu.se; +46-70 602 4281

Susanne Sjöberg | idw
Further information:
http://www.vr.se
http://www.pnas.org/search?fulltext=Microbial+activity+in+frozen+boreal+forest+soils+&submit=yes

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>