Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms in the ground don’t slack off in winter

16.11.2010
It is known that soil microorganisms can maintain some activity during the cold winter months. Scientist at Swedish University of Agricultural Sciences (SLU) and Umeå University in Sweden have now shown that the microorganisms in frozen soils are much more viable than previously anticipated and also has large potential for growth.

In northern forest ecosystems, there is a great deal of carbon stored in the ground. The degradation of this carbon supply is a crucial component in computational models used to describe the effects of future climate changes.

In recent years it has been noticed that the winter half of the year can also have a great impact on the carbon balance of forests, as microorganisms (fungi and bacteria) continue to degrade organic carbon despite freezing temperatures and frozen ground. Just how microorganisms go about breaking down organic carbon under such adverse conditions has largely been unknown, which has rendered it difficult to carry out reliable calculations of a forest’s carbon balance in wintertime.

“The results of previous studies have been interpreted as meaning that microorganisms in frozen ground cannot grow but merely give off a certain amount of carbon dioxide. A research team at SLU in Umeå and at Umeå University has now shown that this is not the case. Instead, the capacity of microorganisms to grow in frozen ground is astonishingly similar to that of the summer half of the year, although the growth rate is lower,” says Mats Öquist from SLU, who directed the study.

These findings are being published this week in the prestigious journal PNAS, published by the American Academy of Sciences.

The study was performed in close collaboration between Mats Öquist, Mats Nilsson, and Stina Harrysson Drotz at SLU, and Jürgen Schleucher and Tobias Sparrman (Umeå University).

In previous publications these scientists have established that the activity of microorganisms in frozen ground is mainly regulated by access to unfrozen water, and they have identified what characteristics in the ground govern the availability of water.

These studies have been possible thanks to a method for monitoring unfrozen water using nuclear magnetic resonance spectroscopy (NMR), a method that was developed by the team. In combination with the latest findings about the capacity of microorganisms to exploit organic materials and grow in frozen ground, this research makes it possible to develop more reliable computational models of the carbon balance of the northern hemisphere.

Contact: Mats Öquist, phone: +46 (0)90-786 8525, mats.oquist@sek.slu.se
Pressofficer Susanne Sjöberg; susanne.sjoberg@amd.slu.se; +46-70 602 4281

Susanne Sjöberg | idw
Further information:
http://www.vr.se
http://www.pnas.org/search?fulltext=Microbial+activity+in+frozen+boreal+forest+soils+&submit=yes

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>