Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms in the ground don’t slack off in winter

16.11.2010
It is known that soil microorganisms can maintain some activity during the cold winter months. Scientist at Swedish University of Agricultural Sciences (SLU) and Umeå University in Sweden have now shown that the microorganisms in frozen soils are much more viable than previously anticipated and also has large potential for growth.

In northern forest ecosystems, there is a great deal of carbon stored in the ground. The degradation of this carbon supply is a crucial component in computational models used to describe the effects of future climate changes.

In recent years it has been noticed that the winter half of the year can also have a great impact on the carbon balance of forests, as microorganisms (fungi and bacteria) continue to degrade organic carbon despite freezing temperatures and frozen ground. Just how microorganisms go about breaking down organic carbon under such adverse conditions has largely been unknown, which has rendered it difficult to carry out reliable calculations of a forest’s carbon balance in wintertime.

“The results of previous studies have been interpreted as meaning that microorganisms in frozen ground cannot grow but merely give off a certain amount of carbon dioxide. A research team at SLU in Umeå and at Umeå University has now shown that this is not the case. Instead, the capacity of microorganisms to grow in frozen ground is astonishingly similar to that of the summer half of the year, although the growth rate is lower,” says Mats Öquist from SLU, who directed the study.

These findings are being published this week in the prestigious journal PNAS, published by the American Academy of Sciences.

The study was performed in close collaboration between Mats Öquist, Mats Nilsson, and Stina Harrysson Drotz at SLU, and Jürgen Schleucher and Tobias Sparrman (Umeå University).

In previous publications these scientists have established that the activity of microorganisms in frozen ground is mainly regulated by access to unfrozen water, and they have identified what characteristics in the ground govern the availability of water.

These studies have been possible thanks to a method for monitoring unfrozen water using nuclear magnetic resonance spectroscopy (NMR), a method that was developed by the team. In combination with the latest findings about the capacity of microorganisms to exploit organic materials and grow in frozen ground, this research makes it possible to develop more reliable computational models of the carbon balance of the northern hemisphere.

Contact: Mats Öquist, phone: +46 (0)90-786 8525, mats.oquist@sek.slu.se
Pressofficer Susanne Sjöberg; susanne.sjoberg@amd.slu.se; +46-70 602 4281

Susanne Sjöberg | idw
Further information:
http://www.vr.se
http://www.pnas.org/search?fulltext=Microbial+activity+in+frozen+boreal+forest+soils+&submit=yes

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>