Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial breakthrough impacts health, agriculture, biofuels

08.09.2010

For the first time ever, University of Illinois researchers have discovered how microbes break down hemicellulose plant matter into simple sugars using a cow rumen bacterium as a model.

"This is ground-breaking research," said Isaac Cann, associate professor in the U of I Department of Animal Sciences and member of the Energy Biosciences Institute (EBI) in the Institute for Genomic Biology. "The implications are very broad, yet it all started with a simple rumen microbe. It's amazing how we can draw inferences to human health and nutrition, biofuel production and animal nutrition because of our new understanding of how a microbe works."

The cow rumen is an excellent model to study as it's one of the most efficient machines to deconstruct plant matter, Cann said. Microbes in the rumen break down plant matter into glucose and xylose to use as nutrients for fermentation and energy acquisition.

U of I researchers utilized DNA sequencing and transcriptomics (RNAseq approach) to determine all of the enzymes the organism, Prevotella bryantii, uses to deconstruct hemicellulose into simple sugars.

"If you don't completely understand what is happening, you can't improve it," Cann said. "The U of I's strong history in anaerobic microbiology and genomics, and the EBI's substantial funding enabled us to achieve this milestone. To my knowledge, this was the first time that anyone has systematically demonstrated the deconstruction of the plant cell wall hemicellulose."

Breaking down hemicellulose is one of the biofuels industry's greatest bottlenecks. Currently, the industry has microbes that can ferment simple sugars into liquid fuels such as ethanol and butanol. But they have struggled to break down feedstocks such as corn stover, switchgrass and miscanthus.

"U of I's research has created an enzyme cocktail that can release simple sugars from hemicellulose and in turn, help the biofuels industry progress," Cann said.

Even though researchers used a bacterium from the cow stomach, their results apply to microbes in the human large intestine, too. Human health and nutrition researchers are interested in the similar strategies certain rumen bacteria and human intestinal bacteria use to capture energy from dietary fiber.

"By fermenting the fiber in our diets, the microbes in our large intestine help to provide about 10 percent of our daily energy requirement," he said. "The microbial fermentation products or short-chain fatty acids provide nutrition to the cells that line our intestines."

Cann added that a greater understanding of the large population of microbes in the large intestine can impact a person's health and nutritional status. For example, a simple change in the colon's microbial population can contribute to the development of inflammatory bowel diseases.

"Understanding how different microbes obtain energy may allow us to modify our diets to select for beneficial microbes to promote better health," he said.

The same principles hold true for livestock, he said.

"It's not possible to understand the nutrition of farm animals without understanding the lifestyle of the microbial populations in their gut," Cann said. "Cattle depend on microbes to obtain their energy from both grass and concentrate diets. A better understanding of how microbes capture nutrients from plant matter can help us to make animal agriculture more efficient."

U of I researchers are building on the knowledge gained from this study to understand how two other major rumen bacteria capture energy from cellulose and cellulose/hemicellulose.

This study, "Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes," was published in the Journal of Biological Chemistry. Researchers include Dylan Dodd, Young Hwan Moon, Kankshita Swaminathan, Roderick Mackie and Isaac Cann of the Energy Biosciences Institute in the Institute for Genomic Biology at the University of Illinois.

News Writer: Jennifer Shike, 217-244-0888, jshike@illinois.edu

Isaac Cann | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>