Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method discovered to make potatoes resistant to Phytophthora

07.08.2008
Dutch, British and American scientists have developed a method to more quickly identify and isolate genes that can be used to make potatoes resistant to Phytophthora infestans, the dreaded potato blight.

With this method, multiple resistance genes from different species of potatoes can be isolated and possibly used simultaneously. This offers the prospect of achieving sustainable resistance against the pathogen because it is less capable of breaking the resistance of the potato when multiple genes are involved.

According to researchers at Wageningen University in the Netherlands, the Sainsbury Laboratory at the John Innes Centre in the UK and Ohio State University in the USA, the best strategy to make potatoes resistant to the stubborn fungal pathogen Phytophthora is to develop so-called broad spectrum resistance. In their article, published on 6 August in the journal PLoS One, they explained that the current methods to discover resistance genes are too slow. Moreover, because they often concern only a single gene, these methods do not lead to sustainable resistance because Phytophthora can break single-gene resistance relatively quickly and easily.

Interaction

The newly developed method is based on the interaction of genes of the pathogen and genes of the potato. The response of the potato involves resistance genes in the plant, and the response of P. infestans involves so-called avirulence genes. The avirulence gene produces proteins (effectors) that are recognised by the resistance gene proteins of the potato; an interaction then takes place. By using effectors (proteins that are secreted by Phytophthora into the plant after infection takes place), researchers can relatively quickly identify and isolate the genes that are crucial to the interaction. Because the pathogen (Phytophthora) cannot switch off these proteins, but produces them constantly, genes that can recognise these proteins can potentially serve as resistance genes.

In the study, a set of 54 effectors (of an estimated 500 effectors in total) were tested on a large set of wild potato species. In many cases, this led to reactions from the wild potato species (the hypersensitivity response: the location where the effector protein was applied begins die off) and in one case to the actual identification of the effector protein – known as IPiO. This effector turned out to be directly correlated with the resistance of three wild species, S. stoloniferum, S. papita and S. bulbocastanum.

This means that a positive response against the effector always occurred in plants that had the resistance gene. In additional studies, the researchers were able to show that the effector in this case was the avirulence gene of the resistance gene. Because the researchers realised that the resistance genes from the three species had to be very similar, they were quickly able to isolate the resistance genes in S. papita and S. stoloniferum by using their knowledge of the previously isolated resistance gene from S. bulbocastanum.

Permanent threat

Since Phytophthora first ravaged the potato – an event epitomised by the notorious Irish Potato Famine in the 19th century – this pathogen has been a permanent threat, and has repeatedly led to disastrous crop damage and high production costs. Until now, a very labour-intensive process of searching for sustainable resistance has yielded few or no results, and the use of fungicides has been essentially the only way to control the disease in modern agriculture.

The methods described in the article make it possible – relatively quickly – to acquire an impression of the prevalence and nature of resistance genes that would be very difficult or even impossible for the pathogen to break. By combining several of these potentially hard-to-break resistance genes, sustainable resistance will come within reach.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>