Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method discovered to make potatoes resistant to Phytophthora

07.08.2008
Dutch, British and American scientists have developed a method to more quickly identify and isolate genes that can be used to make potatoes resistant to Phytophthora infestans, the dreaded potato blight.

With this method, multiple resistance genes from different species of potatoes can be isolated and possibly used simultaneously. This offers the prospect of achieving sustainable resistance against the pathogen because it is less capable of breaking the resistance of the potato when multiple genes are involved.

According to researchers at Wageningen University in the Netherlands, the Sainsbury Laboratory at the John Innes Centre in the UK and Ohio State University in the USA, the best strategy to make potatoes resistant to the stubborn fungal pathogen Phytophthora is to develop so-called broad spectrum resistance. In their article, published on 6 August in the journal PLoS One, they explained that the current methods to discover resistance genes are too slow. Moreover, because they often concern only a single gene, these methods do not lead to sustainable resistance because Phytophthora can break single-gene resistance relatively quickly and easily.

Interaction

The newly developed method is based on the interaction of genes of the pathogen and genes of the potato. The response of the potato involves resistance genes in the plant, and the response of P. infestans involves so-called avirulence genes. The avirulence gene produces proteins (effectors) that are recognised by the resistance gene proteins of the potato; an interaction then takes place. By using effectors (proteins that are secreted by Phytophthora into the plant after infection takes place), researchers can relatively quickly identify and isolate the genes that are crucial to the interaction. Because the pathogen (Phytophthora) cannot switch off these proteins, but produces them constantly, genes that can recognise these proteins can potentially serve as resistance genes.

In the study, a set of 54 effectors (of an estimated 500 effectors in total) were tested on a large set of wild potato species. In many cases, this led to reactions from the wild potato species (the hypersensitivity response: the location where the effector protein was applied begins die off) and in one case to the actual identification of the effector protein – known as IPiO. This effector turned out to be directly correlated with the resistance of three wild species, S. stoloniferum, S. papita and S. bulbocastanum.

This means that a positive response against the effector always occurred in plants that had the resistance gene. In additional studies, the researchers were able to show that the effector in this case was the avirulence gene of the resistance gene. Because the researchers realised that the resistance genes from the three species had to be very similar, they were quickly able to isolate the resistance genes in S. papita and S. stoloniferum by using their knowledge of the previously isolated resistance gene from S. bulbocastanum.

Permanent threat

Since Phytophthora first ravaged the potato – an event epitomised by the notorious Irish Potato Famine in the 19th century – this pathogen has been a permanent threat, and has repeatedly led to disastrous crop damage and high production costs. Until now, a very labour-intensive process of searching for sustainable resistance has yielded few or no results, and the use of fungicides has been essentially the only way to control the disease in modern agriculture.

The methods described in the article make it possible – relatively quickly – to acquire an impression of the prevalence and nature of resistance genes that would be very difficult or even impossible for the pathogen to break. By combining several of these potentially hard-to-break resistance genes, sustainable resistance will come within reach.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>