Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping and sequencing of soybean genome paves the way for improved soybean crops

14.01.2010
Crop improvements are expected to promote energy production, sustainable human and animal food production, and a healthy environmental balance in agriculture wordwide

Soybean, one of the most important global sources of protein and oil, is now the first major crop legume species with a published complete draft genome sequence. This sequence, which essentially provides a parts list of the soybean genome, will help scientists use the plant's genes to improve its characteristics. The soybean sequencing study appears as the cover story of the January 13 edition of Nature.

Value of the new soybean sequence

Scientists will use the new sequence to identify which genes are responsible for particular plant characteristics, and then target specific genes to produce desired characteristics. These desired characteristics may include increases in the plant's oil content to promote the use of soybean oil as a biofuel; bigger crops; improved resistance to pests and diseases that currently claim large percentages of soybean crops; improvements in the digestibility of soybeans by animals and humans; and reductions in contaminants present in the manure of soybean-fed swine and poultry that may pollute farm runoff.

The research team plans to identify which soybean genes warrant targeting by:

Comparing the genomes of different varieties of soybean plants to one another.
Resequencing 20,000 soybean lines that are currently stored in the National Plant Germplasm System to identify desired variances of genes that are not currently captured by domesticated soybean lines.

"When soybeans were domesticated, they were selected for seed size and other traits, but there were a lot of potentially valuable genes left behind," said Scott Jackson of Purdue University--the corresponding author on the soybean genome paper. "There may be valuable genes associated with protein content or disease resistance in the stored lines that are not currently in the cultivated lines."

Having the new soybean sequence as a reference will significantly speed and reduce the costs of resequencing the 20,000 stored soybean lines.

A critical prerequisite to sequencing

The sequencing of the soybean genome was initiated by the production of a physical map of the soybean genome by a research team that was funded by the National Science Foundation (NSF). Production of this map was complicated by the complexities of the soybean genome. These complexities include duplicate copies of genes that account for 70 to 80 percent of the genome's 46,000 genes. These gene copies are scattered throughout the genome and so are particularly difficult to locate.

In addition, the soybean genome contains large numbers of transposable elements, also known as TEs. TEs are mobile DNA pieces that may impact gene expression, but are difficult to distinguish from genes.

The research team conquered the complexities of the soybean genome and produced the map of the soybean genome, which has a lower resolution than the sequence, as a critical prerequisite to the study's sequencing component. The map helped the researchers sequence the genome by enabling them to: 1) distinguish between TEs and genes during sequencing; and 2) break apart and then accurately reassemble the soybean genome as if it were a huge puzzle--as necessary to sequence the genome via the whole genome shotgun strategy.

A closely coordinated project

Because of the importance of the mapping project to the sequencing project, these two components of the study were closely coordinated. "The close coordination of support for this project," said Jane Silverthorne of NSF, "was facilitated by the National Plant Genome Initiative, which is managed by the Interagency Working group on Plant Genomes, whose members include DOE, USDA and NSF." Funding for the mapping/sequencing study was also provided by the United Soybean Board.

A complicated genome

Containing so many TEs and gene duplicates, the soybean genome is "the most complicated genome sequenced to date," said Jackson. And some of the same complexities that complicated the mapping and sequencing of the genome may also complicate the targeting of soybean genes. "If I'm selecting for a gene, I may have difficulty locating all of the necessary duplicates of that gene, explains Jackson. "It has a lot of backup copies."

Confident that such difficulties will be overcome, Silverthorne describes the new soybean sequence as "a valuable tool that will enable research towards a deeper understanding of the impacts of multiple genome copies on genome organization and function." Indeed, Jackson says that techniques developed to map and sequence the soybean genome are already being applied to other sequencing projects.

What's more, the results of the sequencing project have already provided grist for a second paper, which will appear in The Plant Cell on January 15, 2010. Jianxin Ma of Purdue University and a member of the sequencing team says that this second paper will explain how TEs thrive in the host genome: "We found that some 'dead' TEs can actually be revivified by swapping with their active TE partners, and thus restore or even enhance their ability to proliferate using the amplification machinery encoded by their partners. Although TEs are ubiquitous, what we discovered has not been seen in any other organisms yet."

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>