Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male flower parts responsible for potent grapevine perfume

08.04.2009
University of British Columbia scientists have traced the fragrant scent of grapevine flowers to pollen grains stored in the anthers, contrary to common perception that petals alone produce perfume.

While studying grapes used to produce Cabernet Sauvignon from the Okanagan region of British Columbia, researchers from UBC's Wine Research Centre and Michael Smith Laboratories identified a gene that produces and regulates fragrance from the vines' tiny clusters of green blossoms.

"This was a surprise in fundamental plant biology," says Joerg Bohlmann, a Distinguished University Scholar and professor in the Michael Smith Laboratories who directed the study. "This discovery gives us strong clues to the origin and evolution of fragrant flowers."

Details of the study are published in this week's Proceedings of the National Academy of Sciences Online Early Edition.

Scientists believe plants have evolved to produce perfume in order to attract specific types of pollinators while fending off herbivores and pathogens.

"If you ask people where the perfume of a flower comes from, they'll likely say the female parts or the petals," says Bohlmann. While flowers such as roses and snapdragons rely on their petals to produce perfume and attract insects, few other species have been so closely studied.

"Cultivated grapevines are largely self-pollinated, so we believe the fragrance serves more as a defense mechanism to protect their male reproductive tissues from predatory insects," says Bohlmann, who adds that further studies on other flowering species may turn up similar mechanisms. "It may be more prevalent than we think."

The team also found that emission of perfume is light-dependent and is strongest at dawn, possibly to coincide with pollination and predation activities.

The study was supported by funding from Genome Canada, Genome B.C. and the Natural Sciences and Engineering Research Council of Canada.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>