Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look back at US soybeans shows genetic improvement behind increased yields

06.03.2014

Soybean improvement through plant breeding has been critical over the years for the success of the crop.

In a new study that traces the genetic changes in varieties over the last 80 years of soybean breeding, researchers concluded that increases in yield gains and an increased rate of gains over the years are largely due to the continual release of greater-yielding cultivars by breeders.

"This research in some ways looks back and informs us how soybean varieties have changed. It's useful to document these traits and changes," said Brian Diers, a University of Illinois plant breeder and researcher on the study. "We can show that we really have been successful at increasing yield."

But this study is also about the future of the soybean crop.

... more about:
»Agricultural »Consumer »Environmental »Look »soybeans

"The study has actually created quite a lot of interest among soybean breeders because they want to understand what's happened, and when we look at physiological traits, we can see what has been changed. This gives us clues about what traits we should focus on in breeding for future increases based what has been inadvertently changed over time as we have selected for yield," he said.

Diers and a multi-institutional team of researchers evaluated historic sets of 60 maturity group (MG) II, 59 MG III, and 49 MG IV soybean varieties, released from 1923 to 2008, in field trials conducted in 17 states and one Canadian province during 2010 to 2011.

The experiments included plant introductions (PIs) and public cultivars obtained from the USDA Soybean Germplasm Collection housed at the National Soybean Research Center at the U of I, as well as from varieties provided by Monsanto, Pioneer, and Syngenta.

In the process of documenting the genetic changes, the researchers observed an increase in yields over the past 80 years that is equivalent to one-third of a bushel per acre per year increase.

Diers said that the researchers estimated that about two-thirds of the yield increases in farmer's fields are due to new varieties that breeders have introduced with the other third due to other reasons such as improved agronomic practices.

"When we compare old varieties to new varieties, the new varieties do yield much better than the old varieties. When we look at the data more closely, the yield increases have actually accelerated starting in the 1960s and 1970s. It's different for each maturity group, but current yield increases are greater than they were earlier," Diers said.

This research also showed that when compared to old varieties, plants in the new varieties are shorter in height, mature later, lodge less, and have seeds with less protein and greater oil concentration.

"The new varieties tend to mature later within these maturity groups, which is something that theoretically shouldn't happen because we classify these varieties based on when they mature. So theoretically MG II varieties should mature at the same time now as one back in the 1970s, but this is not the case," Diers said. "Probably over time, people have been selecting varieties that are a little bit later and later, and these changes have accumulated. In some ways, it's not a bad thing, because farmers are planting earlier than they did back in the 1970s so they actually need varieties that will mature later than back then. That's not a bad thing."

Other traits reported as changed over time included earlier flowering time, which has resulted in an expanded reproductive period. "We didn't know that this reproductive period was expanding, and we are now asking whether breeding for an even longer reproductive period could further increase yields. Other studies have looked at the interaction of planting date by year of release and have shown new varieties can utilize earlier planting dates better than old varieties," Diers said.

With soybean being a leading source of protein and oil for human food, animal feed, and other products, global rates of yield increases for the crop will need to keep up with demand in the future.

"By understanding how we've made these changes to date, it can help us understand how we can further improve yields and increase the rate of gain," Diers said.

Diers plans to study ways to increase the rate of genetic gains using more modern breeding techniques.

"Most of the yield increases are the result of breeders selecting better combinations of genes that can allow plants to take sunlight and produce more seed from that sunlight. We don't know what genes breeders are selecting that are resulting in these increases, for example, where in that pathway from the sunlight hitting the canopy to producing seed where this occurs. Breeders, by selecting new varieties that have more yield, are able to make this progress without really understanding the mechanism," Diers said.

###

The study, "Genetic Improvement of US Soybean in Maturity Groups II, III, and IV," was recently published in the Journal of Crop Science and can be accessed online at https://www.crops.org/publications/cs/view/first-look/c13-08-0579.

Co-authors of the study include Keith Rincker, Randall Nelson, James Specht, David Sleper, Troy Cary, Silvia R. Cianzio, Shaun Casteel, Shawn Conley, Pengyin Chen, Vince Davis, Carolyn Fox, George Graef, Chad Godsey, David Holshouser, Guo-Liang Jiang, Stella K. Kantartzi, William Kenworthy, Chad Lee, Rouf Mian, Leah McHale, Seth Naeve, James Orf, Vaino Poysa, William Schapaugh, Grover Shannon, Robert Uniatowski, Dechun Wang, and Brian Diers.

Brian Diers | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: Agricultural Consumer Environmental Look soybeans

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>