Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term changes in dead wood reveal new forest dynamics

12.02.2015

Research has implications for balancing habitat and wildfire management

Healthy forest ecosystems need dead wood to provide important habitat for birds and mammals, but there can be too much of a good thing when dead wood fuels severe wildfires.


Forest managers must balance concerns for wildlife habitat with reducing the chance for damaging wildfires.

Credit: Photo by U.S. Forest Service

A scientist with the U.S. Forest Service's Pacific Southwest Research Station (PSW) compared historic and recent data from a forest in California's central Sierra Nevada region to determine how logging and fire exclusion have changed the amounts and sizes of dead wood over time. Results were recently published in Forest Ecology and Management.

PSW Research Ecologist Eric Knapp and a field crew visited three research plots initially established in 1929 in old-growth, mixed conifer stands on the Stanislaus National Forest. The stands had not burned since 1889 and were logged with a variety of methods later in 1929, shortly after the first survey of the plots.

In this study, Knapp and a research crew first used digitized maps to locate and re-measure all live and dead trees in the plots. They later used old plot maps to reconstruct the number and size of downed logs in the 1929 plots and also surveyed logs in the present-day plots.

The research crew compared their present-day data with those from 1929 and documented a more than nine-fold increase in the density of standing dead trees (snags) coupled with a decrease in the average diameter of the snags. Additionally, they observed nearly three times as many logs on the ground (coarse woody debris), but found a substantial decrease in the size of these logs. The majority of downed logs in the present-day re-measurement were highly decayed.

"Because larger-sized dead wood is preferred by many wildlife species, the current condition of more, smaller, and more decayed woody pieces may have a lower ratio of habitat value relative to potential fire hazard," says Knapp. Long-term dead wood changes in these forests pose a challenge for forest managers who must balance concerns for wildlife habitat with reducing the chance for damaging wildfires.

But dead trees, like live trees, can be managed. "To restore dead wood to conditions more like those found historically will require growing larger trees and reducing the addition of dead wood from small and intermediate-sized trees," says Knapp. "Forest thinning, through mechanical means and/or fire has been shown to slow the mortality rate of the remaining trees. In addition, using prescribed fire and low-intensity wildfire, which preferentially consume smaller and more decayed wood, would shift the balance to larger and less decayed pieces of dead wood, and help reduce fuels that contribute to uncharacteristically severe wildfires."

###

To read the paper, visit: http://www.treesearch.fs.fed.us/pubs/47344

Headquartered in Albany, Calif., the Pacific Southwest Research Station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has research facilities in California, Hawaii and the U.S.-affiliated Pacific Islands. For more information, visit http://www.fs.fed.us/psw/.

Media Contact

Stephanie Worley Firley
sworleyfirley@fs.fed.us
828-257-4380

http://www.fs.fed.us/psw/

Stephanie Worley Firley | EurekAlert!

Further reports about: Forest Ecology Forest Service USDA forest ecosystems fuels wildfires

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>