Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term changes in dead wood reveal new forest dynamics

12.02.2015

Research has implications for balancing habitat and wildfire management

Healthy forest ecosystems need dead wood to provide important habitat for birds and mammals, but there can be too much of a good thing when dead wood fuels severe wildfires.


Forest managers must balance concerns for wildlife habitat with reducing the chance for damaging wildfires.

Credit: Photo by U.S. Forest Service

A scientist with the U.S. Forest Service's Pacific Southwest Research Station (PSW) compared historic and recent data from a forest in California's central Sierra Nevada region to determine how logging and fire exclusion have changed the amounts and sizes of dead wood over time. Results were recently published in Forest Ecology and Management.

PSW Research Ecologist Eric Knapp and a field crew visited three research plots initially established in 1929 in old-growth, mixed conifer stands on the Stanislaus National Forest. The stands had not burned since 1889 and were logged with a variety of methods later in 1929, shortly after the first survey of the plots.

In this study, Knapp and a research crew first used digitized maps to locate and re-measure all live and dead trees in the plots. They later used old plot maps to reconstruct the number and size of downed logs in the 1929 plots and also surveyed logs in the present-day plots.

The research crew compared their present-day data with those from 1929 and documented a more than nine-fold increase in the density of standing dead trees (snags) coupled with a decrease in the average diameter of the snags. Additionally, they observed nearly three times as many logs on the ground (coarse woody debris), but found a substantial decrease in the size of these logs. The majority of downed logs in the present-day re-measurement were highly decayed.

"Because larger-sized dead wood is preferred by many wildlife species, the current condition of more, smaller, and more decayed woody pieces may have a lower ratio of habitat value relative to potential fire hazard," says Knapp. Long-term dead wood changes in these forests pose a challenge for forest managers who must balance concerns for wildlife habitat with reducing the chance for damaging wildfires.

But dead trees, like live trees, can be managed. "To restore dead wood to conditions more like those found historically will require growing larger trees and reducing the addition of dead wood from small and intermediate-sized trees," says Knapp. "Forest thinning, through mechanical means and/or fire has been shown to slow the mortality rate of the remaining trees. In addition, using prescribed fire and low-intensity wildfire, which preferentially consume smaller and more decayed wood, would shift the balance to larger and less decayed pieces of dead wood, and help reduce fuels that contribute to uncharacteristically severe wildfires."

###

To read the paper, visit: http://www.treesearch.fs.fed.us/pubs/47344

Headquartered in Albany, Calif., the Pacific Southwest Research Station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has research facilities in California, Hawaii and the U.S.-affiliated Pacific Islands. For more information, visit http://www.fs.fed.us/psw/.

Media Contact

Stephanie Worley Firley
sworleyfirley@fs.fed.us
828-257-4380

http://www.fs.fed.us/psw/

Stephanie Worley Firley | EurekAlert!

Further reports about: Forest Ecology Forest Service USDA forest ecosystems fuels wildfires

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>