Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening to Chickens Could Improve Poultry Production

18.05.2012
Chickens can’t speak, but they can definitely make themselves heard. Most people who have visited a poultry farm will recall chicken vocalization – the technical term for clucking and squawking – as a memorable part of the experience.

Researchers now believe that such avian expressiveness may be more than idle chatter. A collaborative project being conducted by the Georgia Institute of Technology and the University of Georgia is investigating whether the birds’ volubility can provide clues to how healthy and comfortable they are.

And that could be valuable information. Economically, chickens rule the roost in Georgia, where poultry is the top agricultural product with an estimated annual impact of nearly $20 billion statewide. There is industry concern about the welfare of the animals they raise; anything that helps growers reap a maximum return on every flock – while maintaining an environment conducive to their well-being – can translate to important dividends for the state’s economy.

“Many poultry professionals swear they can walk into a grow-out house and tell whether a flock is happy or stressed just by listening to the birds vocalize,” said Wayne Daley, a Georgia Tech Research Institute (GTRI) principal research scientist who is leading the research. “The trouble is, it has proved hard for these pros to pinpoint for us exactly what it is that they're hearing.”

Nevertheless, scientists are convinced that poultry farmers are detecting something real. Recent research at the University of Connecticut’s Department of Animal Science indicates that it is indeed possible to differentiate how the birds react to various conditions based on their vocalizations.

“The behavior of chickens is one of the best and most immediate indicators of their well-being,” said Bruce Webster, a University of Georgia poultry science professor who is working on the project. “Chickens are vocal creatures and produce different types of vocalizations at different rates and loudness depending on their circumstances.”

So the Georgia Tech/University of Georgia team is working to identify and extract specific vocalization features that will bear out both the anecdotal observations and the previous scientific work. The researchers are performing stress-related experiments on small flocks, recording the birds’ reactions on audio and video and analyzing the results.

GTRI is providing expertise in control-systems development and image processing, while Georgia Tech’s School of Electrical and Computer Engineering is contributing audio signal-processing technology and the University of Georgia is providing research facilities as well as guidance in experimental design as they relate to animal behavior and welfare issues.

“If what experienced farmers hear and sense can be defined and quantified, sensors to detect cues from the birds themselves could really make a difference in providing real-time information on house environment, bird health, and comfort,” said Michael Lacy, head of the Department of Poultry Science at the University of Georgia.

The work is funded by the Agricultural Technology Research Program, a state-supported effort to benefit the poultry and food-processing industries.

Naturally, said Daley, the poultry industry already has well-established guidelines covering optimal temperature, air quality and stocking density. Nevertheless, costly problems can still crop up – control systems can malfunction, or presumably ideal levels can turn out to be problematic.

“That’s where being able to judge the flock’s behavior can be so important,” Daley said. “Your temperature sensors might say that things are fine, but the birds could be telling you that they think it's a bit too warm or other changes have occurred to make the conditions less than ideal.”

From a poultry professional’s viewpoint, the flock’s opinion is probably the definitive one. Chickens take only six weeks to go from hatching to finished weight; stressful conditions can retard their growth, reducing their value when they go to market.

“Contract poultry producers are paid by the pound of birds sent to market. Improving the overall health and productivity of the birds will help to improve the bottom line for individual producers,” said Casey Ritz, a University of Georgia associate professor of poultry science who is involved in the research.

The research team has conducted several experiments in which they have exposed flocks to mildly stressful environmental changes. For example, temperature or ammonia levels might be increased from their initial settings for a few hours, then returned to the original level.

The researchers have recorded the flocks’ vocal reactions to the experiments, with video also collected in many instances. To date, more than four terabytes of bird-vocalization audio has been gathered.

Almost at once, the researchers encountered a knotty problem as they recorded bird sounds. They discovered that the large fans necessary for air circulation in a grow-out house can be considerably louder than the chickens, making it difficult to capture bird vocalizations effectively.

David Anderson, a professor in the Georgia Tech School of Electrical and Computer Engineering, has been working on the best methods for harvesting useable bird sounds from the noisy environment. It’s a classic audio signal-processing problem, he said, in which the signal of interest must separated from the noise that surrounds it.

“We have several approaches for extracting poultry voicing from the others noises, and we've been pretty successful in achieving that,” he said. “What makes this different from most other bird-song research is that we're not listening to individuals, we’re listening to sounds in the aggregate. It’s like trying to understand what people are saying in a restaurant, when all you hear are the murmurings of a hundred diners.”

To decode mass poultry vocalizing, Anderson is extracting particular features of the sound, such as speed, volume, pitch and other qualities. Then he’s utilizing machine learning – in which computers recognize complex patterns in data and make decisions based on those patterns – to analyze the extracted features and determine which characteristics may convey specific meanings.

“These are initial experiments, and we're going to have to test under a variety of conditions, but we’ve had considerable success already,” Anderson said. “By listening to the flock we can accurately tell when the birds are experiencing particular kinds of stress, such as significant temperature changes.”

In addition to ensuring high yield flocks, bird-vocalization analysis could save poultry growers money in equipment costs as well, Anderson suggested. For instance, he said, currently available ammonia sensors are both expensive and short-lived. If a system consisting of a few microphones and the right computer algorithms could take over ammonia-detection tasks, it would help reduce costs for the entire industry.

To date, video of the flocks hasn’t produced results as useful as the sound recordings, said GTRI’s Daley. But image processing of flock-reaction video continues, and could yield significant data down the road.

“This multi-disciplinary, multi-institution project highlights the different skills necessary to tackle current problems,” Daley said. “This approach will be valuable in years to come as we tackle a variety of problems to help the industry continue to be profitable and sustainable.”

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Assistance: John Toon (404-894-6986)(jtoon@gatech.edu); Abby Robinson (404-385-3364)(abby@innovate.gatechj.edu) or Kirk Englehardt (404-894-6015)(kirk.englehardt@comm.gatech.edu).

Writer: Rick Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Agricultural and Forestry Science:

nachricht Increasingly severe disturbances weaken world's temperate forests
31.08.2015 | USDA Forest Service - Pacific Southwest Research Station

nachricht Sequencing of barley genome achieves new milestone
26.08.2015 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

First global antineutrino emission map highlights Earth's energy budget

01.09.2015 | Earth Sciences

Distant planet's interior chemistry may differ from our own

01.09.2015 | Physics and Astronomy

Magnetic fields provide a new way to communicate wirelessly

01.09.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>