Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Legume Lessons: Reducing Fertilizer Use Through Beneficial Microbe Reactions

Janine Sherrier, professor in the Department of Plant and Soil Sciences at the University of Delaware, is part of a team that has been awarded $6.8 million from the National Science Foundation (NSF) to study the legume Medicago truncatula.

Sherrier leads one of four research groups participating in this project, which represents a collaborative effort between researchers at the Noble Foundation, the Boyce Thompson Institute at Cornell University, the University of Delaware, and the University of North Texas.

“The aim of this large project is to generate resources for the U.S. and international research communities. We will generate resources to help accelerate the transfer of fundamental laboratory research results into useful applications for crop production,” said Sherrier.

In past years, the NSF has supported projects to sequence the complete genomes of organisms, including M. truncatula. The resources generated by this new NSF grant will help researchers define the roles of all of the individual genes within the genome and to elucidate how they are important for legume growth.

“Legumes, such as beans and lentils, provide one third of the protein consumed as part of the human diet globally. Legumes also contribute fiber and micronutrients to the human diet and are utilized widely as forage crops for livestock,” said Sherrier.

M. truncatula has been selected as a research model to study the symbiotic relationships that are characteristic of legumes. Unlike many species of plants, legumes rely on interactions with rhizobia (naturally-occurring beneficial microbes) to supply them with nitrogen. Many crop plants are supplemented with industrially produced nitrogen fertilizer, and the synthesis of the fertilizer is an energy-intensive process.

“As much as four percent of the world’s natural gas is consumed in the production of nitrogen fertilizers, releasing carbon dioxide by-products into the atmosphere,” said Sherrier.

When nitrogen is not present at sufficient levels in the soil to support plant growth, legumes create a home for beneficial bacteria in their roots. The plant develops a novel root organ where bacteria can grow, multiply and enter the plant cell, and within the plant cells the bacteria convert atmospheric nitrogen into a fertilizer for the plant. This greatly reduces the amount of fertilizer and energy necessary to produce a successful crop, lowers production costs for farmers and reduces runoff of fertilizers into the groundwater.

The focus of Sherrier’s research program is on the protein-to-protein interactions that are necessary for such beneficial plant-bacteria relationships to occur.

“If the plant lacks a specific protein, then this can allow bacteria to enter the plant and simply take the sugar without producing anything in return. This would be detrimental for a crop,” she explained.

As part of the NSF-funded project, Sherrier’s team will also be developing and teaching a 4-H summer camp across Delaware to teach children about how different microbes are important for agriculture. Campers will participate in science-based activities, such as using microscopes and making yogurt. The camps will contribute to the development of future growers in all three counties.

Andrea Boyle | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>