Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learn to run a biorefinery in a virtual control room developed by Iowa State researchers

19.04.2011
David Grewell flipped on the augers that carry corn from a truck to a biorefinery.

Then, with a few more clicks of his computer mouse, he turned on the pumps that send grain all the way through an ethanol plant, from storage to hammer mill to slurry tanks to jet cooker to liquefaction, fermentation, distillation, water separation and ultimately to ethanol storage.

Don't forget the centrifuges, evaporators and driers that recover distillers grains for livestock feed.

All of this happened in a small office on the north side of the Food Sciences Building and the Center for Crops Utilization Research at Iowa State University. Grewell, an associate professor of agricultural and biosystems engineering, calls his virtual control room "Nintendo for biofuel nerds."

But I-BOS (the Interactive Biorefinery Operations Simulator) is no game. It's based on real Iowa biorefineries that are producing ethanol and biodiesel. It's designed to help students in Iowa State's biorenewable resources and technology program learn about biofuel production. And it could be used by the biofuel industry to help train employees to operate a biorefinery.

"This could be the major component of a curriculum for teaching biofuels operators how to run a plant," Grewell said. "It's like a flight simulator for pilots."

And like a good flight simulator, the virtual control room is calibrated to match real-world performance. It's based on differential calculations that describe the fundamental transport phenomena and incorporate the principles of mass and energy conservation. The simulations also take into account more than 20 specific production attributes including moisture, starch content, contaminants, temperature and particle size. All the attributes change as biomass is converted into biofuel. And they can be changed by instructors, giving students experience with a variety of production conditions.

The virtual control room is now written to simulate the operation of ethanol and biodiesel plants. It keeps track of energy consumption, production efficiency and fuel quality. It also features interactive video clips from real biofuel plants that give students a good look at the entire production process.

It can also give them an inside look at a plant emergency. The virtual control room, for example, can simulate a fire in an ethanol plant's distillation column, right down to a red emergency light flashing on the control room wall.

"Students will have to respond to the fire and learn what to turn off to minimize and contain the damage," Grewell said.

The virtual control room can also offer training and experience with new feedstocks and technologies. Grewell said as new ideas are developed, and as researchers understand the processes and conversions, feedstocks such as cellulose from plants or oil from algae can be written into the simulations.

The virtual control room was built by Grewell, Melissa Montalbo-Lomboy, a post-doctoral research associate; Priyanka Chand, a doctoral student; Christopher Rempe, a senior in industrial technology; and former students David Chipman and Yuriy Gritsenko. The project is supported by a three-year, $300,000 grant funded by the U.S. Department of Agriculture, the Renewable Energy Group Inc. of Ames, Lincolnway Energy of Nevada, Fastek International of Cedar Rapids, Cargill, Crown Iron Works Co. and Emerson Electric Co.

Grewell said there's a reason industry is helping to support the research project.

"This project will increase the productivity of biorefineries," Grewell said. "Companies will be better able to train their workers. And those workers will have less of a learning curve."

David Grewell | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>