Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Large Amounts of Soil Carbon be Released if Grasslands are Converted to Energy Crops?

18.02.2009
A recent study published in the March-April 2009 issue of Agronomy Journal analyzed whether or not soils that were converted from perennial grasses to the production of bioenergy grain crops would experience loss of soil organic carbon. The researchers found the best method to keep this carbon sequestered is through no-till production.

Grasslands in the Conservation Reserve Program (CRP) in the United States may be increasingly converted to growing bioenergy grain crops.

Questions abound regarding the fate of carbon sequestered in the soil during the CRP program by perennial grasses if the land is converted to grain crop production and the potential effectiveness of no-till production systems to conserve the sequestered soil organic carbon (SOC). The effect of no-till conversion of land that had been in smooth bromegrass for 13 years to no-till corn production on soil organic carbon in eastern Nebraska was observed for 6 years by USDA scientists.

The bromegrass was killed with herbicides in late fall of 1998 and corn was planted directly into the killed sod in the spring of 1999. No plowing or cultivation was conducted during the entire period of the study. Weeds were controlled with herbicides. Soil samples were collected at three different depths at the beginning and several times during the study and were analyzed for soil organic carbon. Carbon isotope ratio analyses made it possible to determine the amount of soil organic carbon that originated from bromegrass or corn.

The results of this study were reported at the October 5th to 9th meeting of the Soil Science Society of America in Houston, TX, and are published in the March-April 2009 issue of Agronomy Journal.

During the 6 years of the study, the origin of the soil carbon in the two upper soil layers (0- to 5-, and 5- to 10-cm depths) changed with the soil carbon from bromegrass gradually replaced by that from corn. Total soil organic carbon, however, did not change significantly at any depth during the 6 years of the study. There was no loss of sequestered soil carbon during 6 years of continuous no-till corn production.

Ronald Follett, who led this study, states, “If Conservation Reserve Program grasslands are converted to grain crop production, data from this study strongly supports the use of no-till farming practices. The use of no-till was observed to conserve both previously sequestered SOC while also enhancing sequestration of SOC by the bioenergy crops.”

Coauthors Gary Varvel and Ken Vogel indicate that no-till conversion of CRP grasslands into grain crops or perennial biomass crops such as switchgrass is significantly less expensive than using extensive tillage including plowing. No-till conversion of grasslands is feasible because of effective herbicides and improved no-till planting equipment that has been developed. In addition, associated and effective management procedures for no-till conversion of grasslands have been developed and validated.

There are modeling studies reported in the literature that indicate massive amounts of soil carbon will be released to the atmosphere if grasslands such as the CRP grasslands are converted to energy crops and that these releases would then negate the greenhouse gas benefits of the energy crops. These modeling studies are based on the assumption that the grasslands will be plowed followed by extensive tillage to prepare seed beds for the following crops. This study demonstrates that such predicted negative outcomes are likely erroneous.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/full/101/2/261.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>