Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Large Amounts of Soil Carbon be Released if Grasslands are Converted to Energy Crops?

18.02.2009
A recent study published in the March-April 2009 issue of Agronomy Journal analyzed whether or not soils that were converted from perennial grasses to the production of bioenergy grain crops would experience loss of soil organic carbon. The researchers found the best method to keep this carbon sequestered is through no-till production.

Grasslands in the Conservation Reserve Program (CRP) in the United States may be increasingly converted to growing bioenergy grain crops.

Questions abound regarding the fate of carbon sequestered in the soil during the CRP program by perennial grasses if the land is converted to grain crop production and the potential effectiveness of no-till production systems to conserve the sequestered soil organic carbon (SOC). The effect of no-till conversion of land that had been in smooth bromegrass for 13 years to no-till corn production on soil organic carbon in eastern Nebraska was observed for 6 years by USDA scientists.

The bromegrass was killed with herbicides in late fall of 1998 and corn was planted directly into the killed sod in the spring of 1999. No plowing or cultivation was conducted during the entire period of the study. Weeds were controlled with herbicides. Soil samples were collected at three different depths at the beginning and several times during the study and were analyzed for soil organic carbon. Carbon isotope ratio analyses made it possible to determine the amount of soil organic carbon that originated from bromegrass or corn.

The results of this study were reported at the October 5th to 9th meeting of the Soil Science Society of America in Houston, TX, and are published in the March-April 2009 issue of Agronomy Journal.

During the 6 years of the study, the origin of the soil carbon in the two upper soil layers (0- to 5-, and 5- to 10-cm depths) changed with the soil carbon from bromegrass gradually replaced by that from corn. Total soil organic carbon, however, did not change significantly at any depth during the 6 years of the study. There was no loss of sequestered soil carbon during 6 years of continuous no-till corn production.

Ronald Follett, who led this study, states, “If Conservation Reserve Program grasslands are converted to grain crop production, data from this study strongly supports the use of no-till farming practices. The use of no-till was observed to conserve both previously sequestered SOC while also enhancing sequestration of SOC by the bioenergy crops.”

Coauthors Gary Varvel and Ken Vogel indicate that no-till conversion of CRP grasslands into grain crops or perennial biomass crops such as switchgrass is significantly less expensive than using extensive tillage including plowing. No-till conversion of grasslands is feasible because of effective herbicides and improved no-till planting equipment that has been developed. In addition, associated and effective management procedures for no-till conversion of grasslands have been developed and validated.

There are modeling studies reported in the literature that indicate massive amounts of soil carbon will be released to the atmosphere if grasslands such as the CRP grasslands are converted to energy crops and that these releases would then negate the greenhouse gas benefits of the energy crops. These modeling studies are based on the assumption that the grasslands will be plowed followed by extensive tillage to prepare seed beds for the following crops. This study demonstrates that such predicted negative outcomes are likely erroneous.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/full/101/2/261.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>