Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Will Large Amounts of Soil Carbon be Released if Grasslands are Converted to Energy Crops?

A recent study published in the March-April 2009 issue of Agronomy Journal analyzed whether or not soils that were converted from perennial grasses to the production of bioenergy grain crops would experience loss of soil organic carbon. The researchers found the best method to keep this carbon sequestered is through no-till production.

Grasslands in the Conservation Reserve Program (CRP) in the United States may be increasingly converted to growing bioenergy grain crops.

Questions abound regarding the fate of carbon sequestered in the soil during the CRP program by perennial grasses if the land is converted to grain crop production and the potential effectiveness of no-till production systems to conserve the sequestered soil organic carbon (SOC). The effect of no-till conversion of land that had been in smooth bromegrass for 13 years to no-till corn production on soil organic carbon in eastern Nebraska was observed for 6 years by USDA scientists.

The bromegrass was killed with herbicides in late fall of 1998 and corn was planted directly into the killed sod in the spring of 1999. No plowing or cultivation was conducted during the entire period of the study. Weeds were controlled with herbicides. Soil samples were collected at three different depths at the beginning and several times during the study and were analyzed for soil organic carbon. Carbon isotope ratio analyses made it possible to determine the amount of soil organic carbon that originated from bromegrass or corn.

The results of this study were reported at the October 5th to 9th meeting of the Soil Science Society of America in Houston, TX, and are published in the March-April 2009 issue of Agronomy Journal.

During the 6 years of the study, the origin of the soil carbon in the two upper soil layers (0- to 5-, and 5- to 10-cm depths) changed with the soil carbon from bromegrass gradually replaced by that from corn. Total soil organic carbon, however, did not change significantly at any depth during the 6 years of the study. There was no loss of sequestered soil carbon during 6 years of continuous no-till corn production.

Ronald Follett, who led this study, states, “If Conservation Reserve Program grasslands are converted to grain crop production, data from this study strongly supports the use of no-till farming practices. The use of no-till was observed to conserve both previously sequestered SOC while also enhancing sequestration of SOC by the bioenergy crops.”

Coauthors Gary Varvel and Ken Vogel indicate that no-till conversion of CRP grasslands into grain crops or perennial biomass crops such as switchgrass is significantly less expensive than using extensive tillage including plowing. No-till conversion of grasslands is feasible because of effective herbicides and improved no-till planting equipment that has been developed. In addition, associated and effective management procedures for no-till conversion of grasslands have been developed and validated.

There are modeling studies reported in the literature that indicate massive amounts of soil carbon will be released to the atmosphere if grasslands such as the CRP grasslands are converted to energy crops and that these releases would then negate the greenhouse gas benefits of the energy crops. These modeling studies are based on the assumption that the grasslands will be plowed followed by extensive tillage to prepare seed beds for the following crops. This study demonstrates that such predicted negative outcomes are likely erroneous.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software.

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>