Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After Landslides, Soil Carbon Storage Recovers Rapidly

25.11.2009
Soils comprise the largest non-marine carbon pool, exceeding that of the atmosphere and terrestrial biosphere combined. The high carbon storage potential of forest soils and the large area of forested lands in the United States (28% of U.S. land area) makes forest soil development a particularly important carbon sink.

Because most forested areas are in mountainous regions, 40% of U.S. forests are in landslide hazard areas. Thus, the interaction between soil development and mass wasting is critical to understanding the dynamics of terrestrial carbon storage.

In a study funded by the U.C. Kearney Foundation for Soil Science, scientists at the University of California, Riverside, have investigated carbon and nitrogen accumulation in soils formed on debris flows in a coniferous forest in southern California. Soil formation was studied using a space-for-time substitution, in which debris flows of various ages were used to approximate soil formation over time. Results from the study were published in the September-October issue of the Soil Science Society of America Journal.

Soil pits were excavated on 10 debris flows of varying ages and the soils were sampled by horizon for carbon and nitrogen analysis. The bulk density of the soil and volume of rock fragments were also measured, which was necessary to calculate the carbon and nitrogen storage per unit of land area. Expressing storage on a land area basis makes it possible to relate spatial data on forest cover and age structure to carbon and nitrogen cycling in soils.

Strong relationships were observed between soil age and carbon and nitrogen storage, especially in the organic horizons. Extrapolation of the carbon accumulation trend suggests that the carbon storage at the site will approach values typical for the ecosystem type in as little as 500 years.

“At this site we see that the recurrence interval between debris flows is less than the time required for stabilization of the soil carbon and nitrogen pools, effectively holding the soils within the narrow window where carbon and nitrogen accumulation are most rapid” said Judith Turk, co-author of the study. “However, the net impact of such debris flows on the carbon cycle depends significantly on the decomposition rate of organic matter in soils that they bury.”

Ongoing research at the University of California, Riverside, aims to determine the influence of debris flows on carbon storage in the buried soils. Collaborators at the University of Alberta, led by Sylvie Quideau, Prof. of Soil Biogeochemistry, are studying the changes in microbial communities with soil age in the debris flows.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/73/5/1504.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>