Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Killing Crop-Eating Pests: Compounds Work by Disrupting Bugs' Winter Sleep

The creation of compounds that disrupt a worldwide pest's winter sleep hints at the potential to develop natural and targeted controls against crop-eating insects, new research suggests.

Scientists have designed agents that interfere with the protective dormancy period of the corn earworm, a species that infests more than 100 types of plants and costs American farmers an estimated $2 billion a year in losses and control costs.

The compounds, composed of synthetic molecules that mimic the structure of a hormone in these insects, have three different effects on diapause, a hibernation-like state of arrested development that allows many types of bugs to survive through the winter. The agents can force the insects out of diapause prematurely, prevent the bugs from ever entering diapause, or block the termination of diapause.

Any of these cases could be described as "ecological suicide," said David Denlinger, professor of entomology and evolution, ecology and organismal biology at Ohio State University and senior author of the study.

"Diapause is such an important aspect of the life cycle," Denlinger said. "If we can do anything to disrupt the timing of that, make them go into diapause at the wrong time or break them out too early when there is no food available, that would be a pretty effective tool and a possible control strategy.

"And we now have tools that can do all three of those things to manipulate diapause."

The research is published online ahead of print in the Proceedings of the National Academy of Sciences.

The period of diapause in insects is controlled in part by the diapause hormone. In the corn earworm, Helicoverpa zea, and other crop pests, the hormone has been shown to break diapause, essentially waking up the bugs from their pupal state after they have been protectively burrowed underground during cold weather. In some other species, the diapause hormone initiates the hibernation instead.

Denlinger and colleagues investigated the structure of the hormone in these insects, and discovered that seven core amino acids do most of the work of terminating diapause. They then created chemical compounds based on the structure of that portion of the hormone and tested their effects on corn earworm larvae and pupae raised in a laboratory.

"By mimicking the structure of the amino acids, these compounds trick the body into responding as if the hormone is activated," said Qirui Zhang, a postdoctoral researcher in entomology and evolution, ecology and organismal biology at Ohio State and first author of the paper.

The researchers have narrowed the current crop of molecules down to three that appear to have the most potent effects at three different stages in the corn earworm's life. In at least one case, the science has improved on nature: The compound that terminates diapause prematurely is about 50 times more potent than an injection of the natural diapause hormone.

One other compound was so strong that it outright killed the larvae before there was any chance to disrupt their diapause state.

"That's not actually as interesting to us because we're looking at how to manipulate diapause," Denlinger said. "These agents wouldn't necessarily kill them right away, but interfering with diapause takes away their protection that gets them through adverse times and makes them vulnerable to environmental conditions."

Controlling these pests while they are larvae - which is when they do the most damage to plants - is desirable because once they pupate, they are underground and inaccessible, Denlinger noted.

But then again, terminating diapause early means pupae will die of exposure or starvation and won't have the chance to become adult moths that lay eggs and begin the life cycle all over again, he said.

In the experiments for this paper, the compounds were injected into the insects. Zhang is leading current experiments to deliver the agents orally in the bugs' food. Denlinger envisions the use of these compounds in some other form for insect control on a massive scale - perhaps by incorporating them into transgenic plants.

Current control measures for the corn earworm include insecticides and transgenic plants - primarily cotton, and not food crops - that contain a toxin that is deadly to the pest.

The research group will continue to work on refining the molecules and testing their effectiveness. "My guess is that these particular compounds won't be the ones that solve the world's problems, but this points us in the direction that could lead to some next-generation control agents," Denlinger said.

This work was supported by grants from the U.S. Department of Agriculture and the U.S.-Israel Binational Agricultural Research and Development Fund.

Additional co-authors include Ronald Nachman, Krzysztof Kaczmarek and Janusz Zabrocki of the U.S. Department of Agriculture-Agriculture Research Service in College Station, Texas; Kaczmarek and Zabrocki also are affiliated with Technical University of Lodz in Poland.

Contact: David Denlinger, (614) 292-6425;
Written by Emily Caldwell, (614) 292-8310;

Emily Caldwell | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>