Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing Crop-Eating Pests: Compounds Work by Disrupting Bugs' Winter Sleep

29.09.2011
The creation of compounds that disrupt a worldwide pest's winter sleep hints at the potential to develop natural and targeted controls against crop-eating insects, new research suggests.

Scientists have designed agents that interfere with the protective dormancy period of the corn earworm, a species that infests more than 100 types of plants and costs American farmers an estimated $2 billion a year in losses and control costs.

The compounds, composed of synthetic molecules that mimic the structure of a hormone in these insects, have three different effects on diapause, a hibernation-like state of arrested development that allows many types of bugs to survive through the winter. The agents can force the insects out of diapause prematurely, prevent the bugs from ever entering diapause, or block the termination of diapause.

Any of these cases could be described as "ecological suicide," said David Denlinger, professor of entomology and evolution, ecology and organismal biology at Ohio State University and senior author of the study.

"Diapause is such an important aspect of the life cycle," Denlinger said. "If we can do anything to disrupt the timing of that, make them go into diapause at the wrong time or break them out too early when there is no food available, that would be a pretty effective tool and a possible control strategy.

"And we now have tools that can do all three of those things to manipulate diapause."

The research is published online ahead of print in the Proceedings of the National Academy of Sciences.

The period of diapause in insects is controlled in part by the diapause hormone. In the corn earworm, Helicoverpa zea, and other crop pests, the hormone has been shown to break diapause, essentially waking up the bugs from their pupal state after they have been protectively burrowed underground during cold weather. In some other species, the diapause hormone initiates the hibernation instead.

Denlinger and colleagues investigated the structure of the hormone in these insects, and discovered that seven core amino acids do most of the work of terminating diapause. They then created chemical compounds based on the structure of that portion of the hormone and tested their effects on corn earworm larvae and pupae raised in a laboratory.

"By mimicking the structure of the amino acids, these compounds trick the body into responding as if the hormone is activated," said Qirui Zhang, a postdoctoral researcher in entomology and evolution, ecology and organismal biology at Ohio State and first author of the paper.

The researchers have narrowed the current crop of molecules down to three that appear to have the most potent effects at three different stages in the corn earworm's life. In at least one case, the science has improved on nature: The compound that terminates diapause prematurely is about 50 times more potent than an injection of the natural diapause hormone.

One other compound was so strong that it outright killed the larvae before there was any chance to disrupt their diapause state.

"That's not actually as interesting to us because we're looking at how to manipulate diapause," Denlinger said. "These agents wouldn't necessarily kill them right away, but interfering with diapause takes away their protection that gets them through adverse times and makes them vulnerable to environmental conditions."

Controlling these pests while they are larvae - which is when they do the most damage to plants - is desirable because once they pupate, they are underground and inaccessible, Denlinger noted.

But then again, terminating diapause early means pupae will die of exposure or starvation and won't have the chance to become adult moths that lay eggs and begin the life cycle all over again, he said.

In the experiments for this paper, the compounds were injected into the insects. Zhang is leading current experiments to deliver the agents orally in the bugs' food. Denlinger envisions the use of these compounds in some other form for insect control on a massive scale - perhaps by incorporating them into transgenic plants.

Current control measures for the corn earworm include insecticides and transgenic plants - primarily cotton, and not food crops - that contain a toxin that is deadly to the pest.

The research group will continue to work on refining the molecules and testing their effectiveness. "My guess is that these particular compounds won't be the ones that solve the world's problems, but this points us in the direction that could lead to some next-generation control agents," Denlinger said.

This work was supported by grants from the U.S. Department of Agriculture and the U.S.-Israel Binational Agricultural Research and Development Fund.

Additional co-authors include Ronald Nachman, Krzysztof Kaczmarek and Janusz Zabrocki of the U.S. Department of Agriculture-Agriculture Research Service in College Station, Texas; Kaczmarek and Zabrocki also are affiliated with Technical University of Lodz in Poland.

Contact: David Denlinger, (614) 292-6425; denlinger.1@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Emily Caldwell | Newswise Science News
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>