Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing Crop-Eating Pests: Compounds Work by Disrupting Bugs' Winter Sleep

29.09.2011
The creation of compounds that disrupt a worldwide pest's winter sleep hints at the potential to develop natural and targeted controls against crop-eating insects, new research suggests.

Scientists have designed agents that interfere with the protective dormancy period of the corn earworm, a species that infests more than 100 types of plants and costs American farmers an estimated $2 billion a year in losses and control costs.

The compounds, composed of synthetic molecules that mimic the structure of a hormone in these insects, have three different effects on diapause, a hibernation-like state of arrested development that allows many types of bugs to survive through the winter. The agents can force the insects out of diapause prematurely, prevent the bugs from ever entering diapause, or block the termination of diapause.

Any of these cases could be described as "ecological suicide," said David Denlinger, professor of entomology and evolution, ecology and organismal biology at Ohio State University and senior author of the study.

"Diapause is such an important aspect of the life cycle," Denlinger said. "If we can do anything to disrupt the timing of that, make them go into diapause at the wrong time or break them out too early when there is no food available, that would be a pretty effective tool and a possible control strategy.

"And we now have tools that can do all three of those things to manipulate diapause."

The research is published online ahead of print in the Proceedings of the National Academy of Sciences.

The period of diapause in insects is controlled in part by the diapause hormone. In the corn earworm, Helicoverpa zea, and other crop pests, the hormone has been shown to break diapause, essentially waking up the bugs from their pupal state after they have been protectively burrowed underground during cold weather. In some other species, the diapause hormone initiates the hibernation instead.

Denlinger and colleagues investigated the structure of the hormone in these insects, and discovered that seven core amino acids do most of the work of terminating diapause. They then created chemical compounds based on the structure of that portion of the hormone and tested their effects on corn earworm larvae and pupae raised in a laboratory.

"By mimicking the structure of the amino acids, these compounds trick the body into responding as if the hormone is activated," said Qirui Zhang, a postdoctoral researcher in entomology and evolution, ecology and organismal biology at Ohio State and first author of the paper.

The researchers have narrowed the current crop of molecules down to three that appear to have the most potent effects at three different stages in the corn earworm's life. In at least one case, the science has improved on nature: The compound that terminates diapause prematurely is about 50 times more potent than an injection of the natural diapause hormone.

One other compound was so strong that it outright killed the larvae before there was any chance to disrupt their diapause state.

"That's not actually as interesting to us because we're looking at how to manipulate diapause," Denlinger said. "These agents wouldn't necessarily kill them right away, but interfering with diapause takes away their protection that gets them through adverse times and makes them vulnerable to environmental conditions."

Controlling these pests while they are larvae - which is when they do the most damage to plants - is desirable because once they pupate, they are underground and inaccessible, Denlinger noted.

But then again, terminating diapause early means pupae will die of exposure or starvation and won't have the chance to become adult moths that lay eggs and begin the life cycle all over again, he said.

In the experiments for this paper, the compounds were injected into the insects. Zhang is leading current experiments to deliver the agents orally in the bugs' food. Denlinger envisions the use of these compounds in some other form for insect control on a massive scale - perhaps by incorporating them into transgenic plants.

Current control measures for the corn earworm include insecticides and transgenic plants - primarily cotton, and not food crops - that contain a toxin that is deadly to the pest.

The research group will continue to work on refining the molecules and testing their effectiveness. "My guess is that these particular compounds won't be the ones that solve the world's problems, but this points us in the direction that could lead to some next-generation control agents," Denlinger said.

This work was supported by grants from the U.S. Department of Agriculture and the U.S.-Israel Binational Agricultural Research and Development Fund.

Additional co-authors include Ronald Nachman, Krzysztof Kaczmarek and Janusz Zabrocki of the U.S. Department of Agriculture-Agriculture Research Service in College Station, Texas; Kaczmarek and Zabrocki also are affiliated with Technical University of Lodz in Poland.

Contact: David Denlinger, (614) 292-6425; denlinger.1@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Emily Caldwell | Newswise Science News
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>