Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key discovered to cold tolerance in corn

02.09.2008
Demand for corn -- the world's number one feed grain and a staple food for many -- is outstripping supply, resulting in large price increases that are forecast to continue over the next several years.

If corn's intolerance of low temperatures could be overcome, then the length of the growing season, and yield, could be increased at present sites of cultivation and its range extended into colder regions.

Drs. Dafu Wang, Archie Portis, Steve Moose, and Steve Long in the Department of Crop Sciences and the Institute of Genomic Biology at the University of Illinois may have made a breakthrough on this front, as reported in the September issue of the journal Plant Physiology.

Plants can be divided into two groups based on their strategy for harvesting light energy: C4 and C3. The C4 groups include many of the most agriculturally productive plants known, such as corn, sorghum, and sugar cane. All other major crops, including wheat and rice, are C3. C4 plants differ from C3 by the addition of four extra chemical steps, making these plants more efficient in converting sunlight energy into plant matter.

Until recently, the higher productivity achieved by C4 species was thought to be possible only in warm environments. So while wheat, a C3 plant, may be grown into northern Sweden and Alberta, the C4 grain corn cannot. Even within the Corn Belt and despite record yields, corn cannot be planted much before early May and as such is unable to utilize the high sunlight of spring.

Recently a wild C4 grass related to corn, Miscanthus x giganteus, has been found to be exceptionally productive in cold climates. The Illinois researchers set about trying to discover the basis of this difference, focusing on the four extra chemical reactions that separate C4 from C3 plants.

Each of these reactions is catalyzed by a protein or enzyme. The enzyme for one of these steps, Pyruvate Phosphate Dikinase, or PPDK for short, is made up of two parts. At low temperature these parts have been observed to fall apart, differing from the other three C4 specific enzymes. The researchers examined the DNA sequence of the gene coding for this enzyme in both plants, but could find no difference, nor could they see any difference in the behavior of the enzyme in the test tube. However, they noticed that when leaves of corn were placed in the cold, PPDK slowly disappeared in parallel with the decline in the ability of the leaf to take up carbon dioxide in photosynthesis. When Miscanthus leaves were placed in the cold, they made more PPDK and as they did so, the leaf became able to maintain photosynthesis in the cold conditions. Why?

The researchers cloned the gene for PPDK from both corn and Miscanthus into a bacterium, enabling the isolation of large quantities of this enzyme. The researchers discovered that as the enzyme was concentrated, it became resistant to the cold, thus the difference between the two plants was not the structure of the protein components but rather the amount of protein present.

The findings suggest that modifying corn to synthesize more PPDK during cold weather could allow corn, like Miscanthus, to be cultivated in colder climates and be productive for more months of the year in its current locations. The same approach might even be used with sugar cane, which may be crossed with Miscanthus, making improvement of cold-tolerance by breeding a possibility.

Steve Long | EurekAlert!
Further information:
http://www.uiuc.edu
http://www.aspb.org/

Further reports about: Corn Pyruvate Phosphate Dikinase crop sciences cultivation

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>