Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


K-State Research Team Receives Patent to Control Destructive Parasite

A recently patented invention from a Kansas State University research team aims to control a devastating parasite that causes millions of dollars in crop damage each year.

The invention, "Compositions and Methods for Controlling Plant Parasitic Nematodes," was developed by four K-State researchers: Harold Trick, professor of plant pathology; Timothy Todd, an instructor of plant pathology; Michael Herman, associate professor of biology; and Judith Roe, former assistant professor of biology.

The researchers focused their work on the soybean cyst nematode, a destructive parasite that attacks the roots of soybean plants. Farmers across the country lose nearly $860 million every year because of the nematode. Kansas isn't exempt from the parasite: Todd said that every eastern and south central Kansas county that produces soybeans has soybean cyst nematodes.

"Trying to solve the problems with soybean cyst nematodes would be huge and very beneficial to U.S. farmers," Trick said. "Getting a handle on it is important."

Through genetic engineering, the team engineered soybean plants with specific traits, so that when nematodes feed on the roots they ingest these traits that turn off specific nematode genes.

"What we did was target genes that we thought would be vital for the nematode to survive," Trick said. "If we could turn these nematode genes off, we essentially can kill the nematode and provide the plant with protection."

For the patent, the research targeted three genes: MSP, or Major Sperm Protein, which causes nematode sperm to move; Chitin synthase, the gene that helps form the eggshell on nematode offspring; and RNA Polymerase II, which is vital for RNA production.

By controlling these three genes, researchers were able to halt the reproduction of the nematodes and saw a 68 to 70 percent reduction in the presence of soybean cyst nematode. The team was also careful to prevent any negative off-target effects, or ways that the altered genes could negatively affect the soybeans or animals and humans who ingest the soybeans.

While the patent is very valuable for soybean production, it has also opened the way for further beneficial research. Since the work on the patent, Trick and Todd have continued similar research on 20 different kinds of gene sequences in other plant and nematode species. They are taking the same method of destroying the soybean cyst nematode and applying it to nematodes that affect plants such as wheat, tomatoes and pineapples.

Trick and Todd have been supported in their research by funding from the Kansas Soybean Commission and the United Soybean Board. They are in the process of filing for additional patents for some of their inventions.

"With this technology -- it may not be the genes under the patent, and it may be other genes that we find or someone else finds -- we're hoping to produce plants with durable resistance to parasitic nematodes," Trick said.

The patent is the eighth patent that K-State has received this year. It was issued earlier this year to the Kansas State University Research Foundation, or KSURF. The foundation is a nonprofit corporation responsible for managing the technology transfer activities of the university.

The research foundation is working with the National Institute for Strategic Technology Acquisition and Commercialization, known as NISTAC, to license the patent, said Marcia Molina, foundation vice president. NISTAC is involved with the expansion of technology-based, high growth enterprises and helps with the commercialization of intellectual property from K-State researchers.

Harold Trick, 785-532-1426,

Harold Trick | Newswise Science News
Further information:

Further reports about: NISTAC RNA parasite wasps plant pathology soybean soybean plants

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>