Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrigation's Impacts on Global Carbon Uptake

29.08.2011
Globally, irrigation increases agricultural productivity by an amount roughly equivalent to the entire agricultural output of the U.S., according to a new University of Wisconsin-Madison study.

That adds up to a sizeable impact on carbon uptake from the atmosphere. It also means that water shortages - already forecasted to be a big problem as the world warms - could contribute to yet more warming through a positive feedback loop.

The new research quantified irrigation's contribution to global agricultural productivity for the years 1998-2002, estimating the amount of carbon uptake enabled by relieving water stress on croplands. The results published August 25 in the journal Global Biogeochemical Cycles (which can be found at http://www.agu.org/journals/gb/gb1103/2009GB003720/), a publication of the American Geophysical Union.

"If you add up all the annual productivity that comes solely due to irrigation, it adds up to about 0.4 petagrams of carbon, nearly equivalent to the total agricultural productivity of the United States," says study author Mutlu Ozdogan, a UW-Madison professor of forest and wildlife ecology and member of the Nelson Institute for Environmental Studies.

The study also shows quantitatively that irrigation increases productivity in a nonlinear fashion - in other words, adding even a small amount of water to a dry area can have a bigger impact than a larger amount of water in a wetter region. "More irrigation doesn't necessarily mean more productivity," Ozdogan says. "There are diminishing returns."

This was already known on the field scale, he says, but is true globally as well. Interestingly, he found that, on average, worldwide irrigation is currently conducted close to the optimal level that maximizes gains. While this may be good news for current farmers, it implies limited potential for irrigation to boost future productivity even as food demands increase.

The study takes an important step toward quantifying how management decisions can impact global carbon balance and assessing the economic worth of water and carbon in irrigated landscapes.

"Now that we have spatially-explicit maps of how much irrigation is increasing carbon accumulation, we have good information about the value of the water going into those areas. We might be able to come up with a value of carbon in those areas as well," he says. "Of course the flip side of this is that, in many places around the world, if we keep irrigating we are either going to run out of water or degrade soils because of salinity issues."

The current study does not factor in any impacts in areas from which irrigation water is drawn. However, Ozdogan says, a better understanding of the links between irrigation, productivity, and carbon will help researchers look at downstream effects of factors that influence each of those elements - for example, how water shortages in agricultural regions may affect regional carbon cycles and climate.

The study continues a history of work from the UW-Madison's Center for Sustainability and the Global Environment that includes the development of several freely available climate and ecosystem models, maps, and datasets (available at http://www.sage.wisc.edu/mapsdatamodels.html). This research was partially supported by a National Aeronautics and Space Administration Applied Sciences Program grant.

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>