Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Papaya Pest Discovered in Asia

10.10.2008
Papaya is a multimillion dollar crop in Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida. The first reported occurrences of papaya mealybug in Indonesia and Southeast Asia were in May and then in July. Scientists are using integrated pest management to contain the pest.

Thanks to efforts by scientists in a Virginia Tech-led program, the papaya mealybug — an emerging threat from India to Indonesia — is being identified and contained.

Attacks by the papaya mealybug are a serious threat. In Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida, papaya means millions of dollars for farmers, middlemen, and processors. In West Java, the scourge has wiped out most of the papaya plantations.

In May, 2008, a team from the Integrated Pest Management Collaborative Research Support Program (IPM CRSP), managed by Virginia Tech’s Office of International Research, Education, and Development, identified papaya mealybug on papaya trees at the Bogor Botanical Gardens in West Java, Indonesia.

It was the first reported occurrence of papaya mealybug in Indonesia and Southeast Asia.

A specialist in mealybug taxonomy at the California Department of Agriculture confirmed the identification as papaya mealybug — an unarmored scale insect found in moist, warm climates.

Two months later, on a trip to Tamil Nadu Agricultural University in Coimbatore, India, Muni Muniappan, director of the IPM CRSP at Virginia Tech, recognized the telltale sticky residue on papayas he saw there as papaya mealybug.

In each case, IPM scientists alerted government authorities and advised them on appropriate actions to take. These discoveries are crucial; the sooner authorities can arrest the spread of the papaya mealybug, the better their chances of saving this lucrative tropical crop.

While papaya is an exotic fruit in the northern hemisphere, papain, a product of papaya, is used in a variety of ways every day, including the production of chewing gum, shampoo, and toothpaste and tooth whiteners; as a meat tenderizer; and in the brewing and textile industries. In many tropical countries, papaya is an important commercial crop and a key component of the daily diet.

The papaya mealybug originated in Mexico, where it developed alongside natural enemies and was first identified in 1992. It wasn’t until it jumped countries and started proliferating in places where it had no natural enemies that it began to pose problems. In 1995, it was discovered on the Caribbean island of St. Martin. By the year 2000, it had spread to 13 countries in the Caribbean, to Florida in the United States, and to three countries each in Central and South America.

The papaya mealybug is a particularly devastating pest because it is polyphagous—it feeds on many things. The insect’s host range includes more than 60 species of plants: cassava, papaya, beans, eggplant, melons, hisbiscus, plumeria, pepper, sweet potato, tomato, citrus, mango, and sour sop.

On papaya plants, the mealybug infests all parts of the young leaves and fruits, mostly along the veins and midrib of the older leaves. Young leaves become crinkly and older leaves turn yellow and dry up. Terminal shoots become bunchy and distorted. Affected trees drop flowers and fruits. To add insult to injury, the mealybug secretes a honeydew-like substance that turns into a thick sooty mold growth, making the fruit inedible and unusable for the production of papain.

The good news is that the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) has developed a biological control program to tackle the pest. Biological control is an integrated pest management tactic that pits natural enemies against pests. APHIS has identified three parasitoids including parasitic wasps that are highly effective at containing the mealybug. These natural enemies are being cultured in a laboratory in Puerto Rico and are offered free to countries that request them.

The IPM CRSP, funded by the U.S. Agency for International Development, is a consortium of integrated pest management scientists working to raise the standard of living in developing countries. The IPM CRSP team that traveled to Indonesia included Robert Hedlund, Cognizant Technical Officer for the USAID-funded program; Muniappan; Clemson University entomology Professors Merle Shepard and Gerry Carner; Clemson economics Professor Mike Hammig; Yulu Xia, assistant director of the NSF Center for IPM at North Carolina State; and Aunu Rauf, professor of entomology at Bogor Agricultural University in Indonesia.

While the challenge of reclaiming the papaya plantations from the papaya mealybug seems daunting, Muniappan is optimistic. “The use of parasitoids has been very effective in Caribbean and Latin American countries, and in Florida, Guam, and Palau,” he said. “But we need to be vigilant.”

Miriam Rich | Newswise Science News
Further information:
http://www.vt.edu
http://www.oired.vt.edu/ipmcrsp

Further reports about: Agricultural Papaya Pest Pest crop papaya papaya mealybug papaya plantations

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>