Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Papaya Pest Discovered in Asia

10.10.2008
Papaya is a multimillion dollar crop in Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida. The first reported occurrences of papaya mealybug in Indonesia and Southeast Asia were in May and then in July. Scientists are using integrated pest management to contain the pest.

Thanks to efforts by scientists in a Virginia Tech-led program, the papaya mealybug — an emerging threat from India to Indonesia — is being identified and contained.

Attacks by the papaya mealybug are a serious threat. In Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida, papaya means millions of dollars for farmers, middlemen, and processors. In West Java, the scourge has wiped out most of the papaya plantations.

In May, 2008, a team from the Integrated Pest Management Collaborative Research Support Program (IPM CRSP), managed by Virginia Tech’s Office of International Research, Education, and Development, identified papaya mealybug on papaya trees at the Bogor Botanical Gardens in West Java, Indonesia.

It was the first reported occurrence of papaya mealybug in Indonesia and Southeast Asia.

A specialist in mealybug taxonomy at the California Department of Agriculture confirmed the identification as papaya mealybug — an unarmored scale insect found in moist, warm climates.

Two months later, on a trip to Tamil Nadu Agricultural University in Coimbatore, India, Muni Muniappan, director of the IPM CRSP at Virginia Tech, recognized the telltale sticky residue on papayas he saw there as papaya mealybug.

In each case, IPM scientists alerted government authorities and advised them on appropriate actions to take. These discoveries are crucial; the sooner authorities can arrest the spread of the papaya mealybug, the better their chances of saving this lucrative tropical crop.

While papaya is an exotic fruit in the northern hemisphere, papain, a product of papaya, is used in a variety of ways every day, including the production of chewing gum, shampoo, and toothpaste and tooth whiteners; as a meat tenderizer; and in the brewing and textile industries. In many tropical countries, papaya is an important commercial crop and a key component of the daily diet.

The papaya mealybug originated in Mexico, where it developed alongside natural enemies and was first identified in 1992. It wasn’t until it jumped countries and started proliferating in places where it had no natural enemies that it began to pose problems. In 1995, it was discovered on the Caribbean island of St. Martin. By the year 2000, it had spread to 13 countries in the Caribbean, to Florida in the United States, and to three countries each in Central and South America.

The papaya mealybug is a particularly devastating pest because it is polyphagous—it feeds on many things. The insect’s host range includes more than 60 species of plants: cassava, papaya, beans, eggplant, melons, hisbiscus, plumeria, pepper, sweet potato, tomato, citrus, mango, and sour sop.

On papaya plants, the mealybug infests all parts of the young leaves and fruits, mostly along the veins and midrib of the older leaves. Young leaves become crinkly and older leaves turn yellow and dry up. Terminal shoots become bunchy and distorted. Affected trees drop flowers and fruits. To add insult to injury, the mealybug secretes a honeydew-like substance that turns into a thick sooty mold growth, making the fruit inedible and unusable for the production of papain.

The good news is that the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) has developed a biological control program to tackle the pest. Biological control is an integrated pest management tactic that pits natural enemies against pests. APHIS has identified three parasitoids including parasitic wasps that are highly effective at containing the mealybug. These natural enemies are being cultured in a laboratory in Puerto Rico and are offered free to countries that request them.

The IPM CRSP, funded by the U.S. Agency for International Development, is a consortium of integrated pest management scientists working to raise the standard of living in developing countries. The IPM CRSP team that traveled to Indonesia included Robert Hedlund, Cognizant Technical Officer for the USAID-funded program; Muniappan; Clemson University entomology Professors Merle Shepard and Gerry Carner; Clemson economics Professor Mike Hammig; Yulu Xia, assistant director of the NSF Center for IPM at North Carolina State; and Aunu Rauf, professor of entomology at Bogor Agricultural University in Indonesia.

While the challenge of reclaiming the papaya plantations from the papaya mealybug seems daunting, Muniappan is optimistic. “The use of parasitoids has been very effective in Caribbean and Latin American countries, and in Florida, Guam, and Palau,” he said. “But we need to be vigilant.”

Miriam Rich | Newswise Science News
Further information:
http://www.vt.edu
http://www.oired.vt.edu/ipmcrsp

Further reports about: Agricultural Papaya Pest Pest crop papaya papaya mealybug papaya plantations

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>