Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insecticides from genetically modified corn present in adjacent streams

28.09.2010
Stream ecosystems are tightly linked to agricultural fields and should be considered when adopting new agricultural technologies

In a paper published this week in the Proceedings of the National Academy of Sciences, Cary Institute aquatic ecologist Dr. Emma Rosi-Marshall and colleagues report that streams throughout the Midwestern Corn Belt are receiving insecticidal proteins that originate from adjacent genetically modified crops. The protein enters streams through runoff and when corn leaves, stalks, and plant parts are washed into stream channels.

Genetically-modified plants are a mainstay of large-scale agriculture in the American Midwest, where corn is a dominant crop. In 2009, more than 85% of U.S. corn crops were genetically modified to repel pests and/or resist herbicide exposure. Corn engineered to release an insecticide that wards off the European corn borer, commonly referred to as Bt corn, comprised 63% of crops. The tissue of these plants has been modified to express insecticidal proteins, one of which is commonly known as Cry1Ab.

Following an assessment of 217 stream sites in Indiana, the paper's authors found dissolved Cry1Ab proteins from Bt corn present in stream water at nearly a quarter of the sites, including headwater streams. Eighty-six percent of the sampled sites contained corn leaves, husks, stalks, or cobs in their channels; at 13% of these sites corn byproducts contained detectable Cry1Ab proteins. The study was conducted six months after crop harvest, indicating that the insecticidal proteins in crop byproducts can persist in the landscape.

Using these data, U.S. Department of Agriculture land cover data, and GIS modeling, the authors found that all of the stream sites with detectable Cry1Ab insecticidal proteins were located within 500 meters of a corn field. Furthermore, given current agricultural land use patterns, 91% percent of the streams and rivers throughout Iowa, Illinois, and Indiana —some 159,000 miles of waterways—are also located within 500 meters of corn fields.

Rosi-Marshall comments, "Our research adds to the growing body of evidence that corn crop byproducts can be dispersed throughout a stream network, and that the compounds associated with genetically-modified crops, such as insecticidal proteins, can enter nearby water bodies."

After corn crops are harvested, a common agricultural practice is to leave discarded plant material on the fields. This "no-till" form of agriculture minimizes soil erosion, but it also sets the stage for corn byproducts to enter nearby stream channels.

Rosi-Marshall concludes, "The tight linkage between corn fields and streams warrants further research into how corn byproducts, including Cr1Ab insecticidal proteins, potentially impact non-target ecosystems, such as streams and wetlands." These corn byproducts may alter the health of freshwaters. Ultimately, streams that originate in the Corn Belt drain into the Mississippi River and the Great Lakes.

Other authors on the PNAS paper included first-author Dr. Jennifer L. Tank (University of Notre Dame) and Drs. Todd V. Royer (Indiana University), Matthew R. Whiles (Southern Illinois University), Natalie A. Griffiths (University of Notre Dame), Therese C. Frauendorf (University of Notre Dame), and David J. Treering (Loyola University Chicago).

The Cary Institute of Ecosystem Studies is a private, not-for-profit environmental research and education organization in Millbrook, N.Y. For more than twenty-five years, Cary Institute scientists have been investigating the complex interactions that govern the natural world. Their objective findings lead to more effective policy decisions and increased environmental literacy. Focal areas include air and water pollution, climate change, invasive species, and the ecological dimensions of infectious disease. Learn more at www.caryinstitute.org

Lori M. Quillen | EurekAlert!
Further information:
http://www.caryinstitute.org

More articles from Agricultural and Forestry Science:

nachricht The farm of the future?
01.03.2017 | American Chemical Society

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>