Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving crops from the roots up

25.01.2012
Research involving scientists at The University of Nottingham has taken us a step closer to breeding hardier crops that can better adapt to different environmental conditions and fight off attack from parasites.

In a paper published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), the researchers have shown that they can alter root growth in the plant Arabidopsis thaliana, or thale cress, by controlling an important regulatory protein.

Dr Ive De Smet, a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellow in the University's Division of Plant and Crop Science, said: "The world's population is increasing, and a new green revolution is even more pressing to deliver global food security. To achieve this, optimising the root system of plants is essential and these recent results will contribute significantly to our goal of improving crop growth and yield under varying environmental conditions."

The work was carried out by an international team of researchers. Led by scientists from the Plant Systems Biology Department in the life sciences research institute VIB in Flanders, Belgium, and Ghent University, the study also involved experts from Wake Forest University in the US and the Albrecht-von-Haller Institute for Plant Sciences in Germany.

Plant root biology is essential for healthy plant growth and, while the so-called hidden half of the plant has often been overlooked, its importance is becoming increasingly recognised by scientists.

Despite this, particularly in view of the critical role plants play in global food security, improving plant growth by modulating the biological architecture of root systems is an area which is largely unexplored.

In this latest research, the scientists modulated levels of the protein, transcription factor WRKY23, in plants, analysed the effects on root development and used chemical profiling to demonstrate that this key factor controls the biosynthesis of important metabolites called flavonols.

Altered levels of flavonols affected the distribution of auxin, a plant hormone controlling many aspects of development, which resulted in impaired root growth.

The results of the research can now be used to produce new plant lines, such as crops which are economically valuable, which have an improved root system, making them better able to resist environmental changes which could lead to plant damage or poor yield.

In addition, WRKY23 was previously found to play a role in the way plants interact with types of nematode parasites, which could lead to further research into how to prevent attacks from the creatures during the early stages of plant growth.

The paper Transcription Factor WRKY23 Assists Auxin Distribution Patterns During Arabidopsis Root Development Through Local Control on Flavonol Biosynthesis featured in the online Early Edition of the Proceedings of the National Academy of Sciences of the United States of America. A pdf of the paper can be downloaded from the PNAS website at www.pnas.org

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>