Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improved harvest for small farms thanks to naturally cloned crops


As hybrid plants provide a very high agricultural yield for only one generation, new hybrid seeds need to be produced and used every year. However, natural cloning via seeds might enable the efficiency of such plants to be passed on unchanged. For the first time in experiments, researchers from the University of Zurich have now demonstrated that this nearly 80-year-old idea actually works. This may open up fresh possibilities for both seed producers and small farms in the Third World.

In today’s agriculture, hybrid plants are crucial for the sufficient production of food, feed, fuel and fiber. These crosses between two different varieties are deemed particularly hardy and far more productive than their thoroughbred parent generations.

The new generation of hybrid plants in the greenhouse.

Image UZH

The natural apomictic mouse-ear hawkweed (Hieracium pilosella).

Image UZH

Thanks to hybrid plants, the harvests from types of cereal crop, such as corn, can be more than doubled. However, the positive properties are already lost in the next generation, which is why hybrid seeds need to be reproduced annually. These crosses are costly and time-consuming and farmers are reliant on new seeds every year.

Back in the 1930s, two Russian scientists came up with a proposal to simplify this elaborate process: If the first generation of crosses, the so-called F1 hybrid, were able to reproduce asexually, it would retain their increased efficiency.

Some plant species naturally reproduce by cloning their seeds, which is referred to as apomixis. The theory that apomixis might preserve the properties of hybrid plants, however, had never been tested in an experimental setup – until now: Professor Ueli Grossniklaus and his team from the Department of Plant and Microbial Biology at the University of Zurich have found proof.

Key contribution towards apomixis research

“Based on hybrid plants that reproduce apomictically, we demonstrated that the offspring also exhibit the desired biological properties,” explains first author Dr. Christian Sailer. “We managed to fix the hybrids’ particular efficiency.”

The plants achieve the same size and yield for at least two more gener-ations. This is in stark contrast to the individual plants of the following generation of conventional F1 hybrids used in agriculture, which differ significantly. Sailer’s publication is a key, much-anticipated contribution towards apomixis research and its potential application as it was previously unclear whether the fixation of the genotype would suffice to preserve the advantageous properties of hybrids for generations.

For their experiments, the research team created 11 new hybrids using natural apomictic mouse-ear hawkweed (Hieracium pilosella) and reproduced them for two generations through the natural cloning of the seeds. 20 different properties were measured and tested to see if they changed from one plant generation to the next. Moreover, both generations of the same clone were grown in the greenhouse at the same time to expose them to the same environmental conditions and exclude various factors, such as temperature, water and light.

More affordable and hardy seeds for small farms

“If this special reproduction method could be used in crops, it would slash the cost of producing F1 hybrid seeds,” explains Professor Ueli Grossniklaus. “It’s not just seed producers who stand to benefit, but also subsistence farmers in developing countries.”

Nowadays, these small farmers usually use less productive native crops for their own personal use. Apomictic reproduction would offer them more affordable access to more productive and hardy hybrid strains. And they would be able to use the seeds from the current harvest for sowing the following year without affecting the yield. According to Grossniklaus, however, its actual use in crops still needs to be tested in detail.

Christian Sailer, Bernhard Schmid, Ueli Grossniklaus. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Current Biology, 28. Januar 2016. Doi: 10.1016/j.cub.2015.12.045

Prof. Ueli Grossniklaus
Department of Plant and Microbial Biology
University of Zurich
Phone +41 79 598 33 89 (in the evening)

Christian Sailer
Cellular and Developmental Biology
John Innes Centre
Colney Lane
Norwich, United Kingdom
Phone: +44 1603 450519

Weitere Informationen:

Melanie Nyfeler | Universität Zürich

Further reports about: Biology agriculture crops hybrid plants plant species seeds

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>