Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved harvest for small farms thanks to naturally cloned crops

29.01.2016

As hybrid plants provide a very high agricultural yield for only one generation, new hybrid seeds need to be produced and used every year. However, natural cloning via seeds might enable the efficiency of such plants to be passed on unchanged. For the first time in experiments, researchers from the University of Zurich have now demonstrated that this nearly 80-year-old idea actually works. This may open up fresh possibilities for both seed producers and small farms in the Third World.

In today’s agriculture, hybrid plants are crucial for the sufficient production of food, feed, fuel and fiber. These crosses between two different varieties are deemed particularly hardy and far more productive than their thoroughbred parent generations.


The new generation of hybrid plants in the greenhouse.

Image UZH


The natural apomictic mouse-ear hawkweed (Hieracium pilosella).

Image UZH

Thanks to hybrid plants, the harvests from types of cereal crop, such as corn, can be more than doubled. However, the positive properties are already lost in the next generation, which is why hybrid seeds need to be reproduced annually. These crosses are costly and time-consuming and farmers are reliant on new seeds every year.

Back in the 1930s, two Russian scientists came up with a proposal to simplify this elaborate process: If the first generation of crosses, the so-called F1 hybrid, were able to reproduce asexually, it would retain their increased efficiency.

Some plant species naturally reproduce by cloning their seeds, which is referred to as apomixis. The theory that apomixis might preserve the properties of hybrid plants, however, had never been tested in an experimental setup – until now: Professor Ueli Grossniklaus and his team from the Department of Plant and Microbial Biology at the University of Zurich have found proof.

Key contribution towards apomixis research

“Based on hybrid plants that reproduce apomictically, we demonstrated that the offspring also exhibit the desired biological properties,” explains first author Dr. Christian Sailer. “We managed to fix the hybrids’ particular efficiency.”

The plants achieve the same size and yield for at least two more gener-ations. This is in stark contrast to the individual plants of the following generation of conventional F1 hybrids used in agriculture, which differ significantly. Sailer’s publication is a key, much-anticipated contribution towards apomixis research and its potential application as it was previously unclear whether the fixation of the genotype would suffice to preserve the advantageous properties of hybrids for generations.

For their experiments, the research team created 11 new hybrids using natural apomictic mouse-ear hawkweed (Hieracium pilosella) and reproduced them for two generations through the natural cloning of the seeds. 20 different properties were measured and tested to see if they changed from one plant generation to the next. Moreover, both generations of the same clone were grown in the greenhouse at the same time to expose them to the same environmental conditions and exclude various factors, such as temperature, water and light.

More affordable and hardy seeds for small farms

“If this special reproduction method could be used in crops, it would slash the cost of producing F1 hybrid seeds,” explains Professor Ueli Grossniklaus. “It’s not just seed producers who stand to benefit, but also subsistence farmers in developing countries.”

Nowadays, these small farmers usually use less productive native crops for their own personal use. Apomictic reproduction would offer them more affordable access to more productive and hardy hybrid strains. And they would be able to use the seeds from the current harvest for sowing the following year without affecting the yield. According to Grossniklaus, however, its actual use in crops still needs to be tested in detail.

Literature:
Christian Sailer, Bernhard Schmid, Ueli Grossniklaus. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Current Biology, 28. Januar 2016. Doi: 10.1016/j.cub.2015.12.045

Contact:
Prof. Ueli Grossniklaus
Department of Plant and Microbial Biology
University of Zurich
Phone +41 79 598 33 89 (in the evening)
E-mail: grossnik@botinst.uzh.ch

Christian Sailer
Cellular and Developmental Biology
John Innes Centre
Colney Lane
Norwich, United Kingdom
Phone: +44 1603 450519
E-mail: christian.sailer@jic.ac.uk

Weitere Informationen:

http://www.mediadesk.uzh.ch/index_en.html

Melanie Nyfeler | Universität Zürich

Further reports about: Biology agriculture crops hybrid plants plant species seeds

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>