Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Impact of the Diffusion of Maize to the Southwestern United States

An international group of anthropologists offers a new theory about the diffusion of maize to the Southwestern United States and the impact it had.

Published the week of Dec. 7 in the Proceedings of the National Academy of Sciences, the study, co-authored by Gayle Fritz, Ph.D., professor of anthropology in Arts & Sciences at Washington University in St. Louis, and colleagues*, suggests that maize was passed from group to group of Southwestern hunter-gatherers.

These people took advantage of improved moisture conditions by integrating a storable and potentially high-yielding crop into their broad-spectrum subsistence strategy.

"For decades, there have been two competing scenarios for the spread of maize and other crops into what is now the U.S. Southwest," Fritz said.

According to the first, groups of farmers migrated northward from central Mexico into northwest Mexico and from there into the Southwest, bringing their crops and associated lifeways with them.

In the second scenario, maize moved northward from central Mexico to be Southwest by being passed from one hunter-gatherer band to the next, who incorporated the crop into their subsistence economies and eventually became farmers themselves.

"The case for long-distance northward migration of Mexican farming societies received a boost about 12 years ago when British archaeologist Peter Bellwood, joined a few years later by geographer Jared Diamond and linguist Jane Hill, included the Southwest in a grand global model in which long-distance migration of agriculturalists explains the spread of many of the world's major language families," Fritz said. "In the Southwest case, Uto-Aztecan-speaking peoples, ancestors of people who speak modern languages, like Comanche and Hopi, would have been responsible for the diffusion."

In this paper, the researchers summarize the most recent archaeological evidence, and integrate what is currently known about early maize in the Southwest with genetic, paleoecological, and historical linguistic studies.

Corn from five sites in Arizona and New Mexico now predates 2,000 B.C., which makes it too early to be explained by diffusion of settled Mexican villagers, said Fritz.

"No artifacts or features of any type point to in-migrating Mesoamerican farmers; in fact, continuity of local traditions is manifested, with independent invention of low-fired ceramics and with the construction of irrigation features in the Tucson Basin dating earlier than any known south of the border," she said. "We interpret the linguistic evidence as favoring a very early (beginning shortly after 7,000 B.C.), north-to-south movement of Proto-Uto-Aztecan hunter-gatherers and subsequent division into northern and southern Uto-Aztecan-speaking groups. "

These two groups do not share words and meanings for maize because, according to the researchers' scenario, farming post-dates their separation.

"We think the Southwest stands as a region in which indigenous foragers adopted crops and made the transition to agriculture locally rather than having been joined or displaced by in-migrating farming societies," Fritz said. "Peter Bellwood may well be correct that long-distance movements account for some examples of the expansion of languages and farming technologies, but cases like that of the Southwest are very important in demonstrating that this pattern did not apply universally."

* Lead authors of this study are William L. Merrill of the National Museum of Natural History and Robert J. Hard of University of Texas at San Antonio. Co-authors are Fritz, Karen R. Adams of Crow Canyon Archaeological Center, John R. Roney of Colinas Cultural Resource Consulting and A.C. MacWilliams of University of Calgary.

Full text of the study is available at

Gayle Fritz
Professor of anthropology at Washington University in St. Louis

Gayle Fritz | Newswise Science News
Further information:

Further reports about: Diffusion Impact Science TV Uto-Aztecan-speaking crops maize

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>