Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impact of the Diffusion of Maize to the Southwestern United States

10.12.2009
An international group of anthropologists offers a new theory about the diffusion of maize to the Southwestern United States and the impact it had.

Published the week of Dec. 7 in the Proceedings of the National Academy of Sciences, the study, co-authored by Gayle Fritz, Ph.D., professor of anthropology in Arts & Sciences at Washington University in St. Louis, and colleagues*, suggests that maize was passed from group to group of Southwestern hunter-gatherers.

These people took advantage of improved moisture conditions by integrating a storable and potentially high-yielding crop into their broad-spectrum subsistence strategy.

"For decades, there have been two competing scenarios for the spread of maize and other crops into what is now the U.S. Southwest," Fritz said.

According to the first, groups of farmers migrated northward from central Mexico into northwest Mexico and from there into the Southwest, bringing their crops and associated lifeways with them.

In the second scenario, maize moved northward from central Mexico to be Southwest by being passed from one hunter-gatherer band to the next, who incorporated the crop into their subsistence economies and eventually became farmers themselves.

"The case for long-distance northward migration of Mexican farming societies received a boost about 12 years ago when British archaeologist Peter Bellwood, joined a few years later by geographer Jared Diamond and linguist Jane Hill, included the Southwest in a grand global model in which long-distance migration of agriculturalists explains the spread of many of the world's major language families," Fritz said. "In the Southwest case, Uto-Aztecan-speaking peoples, ancestors of people who speak modern languages, like Comanche and Hopi, would have been responsible for the diffusion."

In this paper, the researchers summarize the most recent archaeological evidence, and integrate what is currently known about early maize in the Southwest with genetic, paleoecological, and historical linguistic studies.

Corn from five sites in Arizona and New Mexico now predates 2,000 B.C., which makes it too early to be explained by diffusion of settled Mexican villagers, said Fritz.

"No artifacts or features of any type point to in-migrating Mesoamerican farmers; in fact, continuity of local traditions is manifested, with independent invention of low-fired ceramics and with the construction of irrigation features in the Tucson Basin dating earlier than any known south of the border," she said. "We interpret the linguistic evidence as favoring a very early (beginning shortly after 7,000 B.C.), north-to-south movement of Proto-Uto-Aztecan hunter-gatherers and subsequent division into northern and southern Uto-Aztecan-speaking groups. "

These two groups do not share words and meanings for maize because, according to the researchers' scenario, farming post-dates their separation.

"We think the Southwest stands as a region in which indigenous foragers adopted crops and made the transition to agriculture locally rather than having been joined or displaced by in-migrating farming societies," Fritz said. "Peter Bellwood may well be correct that long-distance movements account for some examples of the expansion of languages and farming technologies, but cases like that of the Southwest are very important in demonstrating that this pattern did not apply universally."

* Lead authors of this study are William L. Merrill of the National Museum of Natural History and Robert J. Hard of University of Texas at San Antonio. Co-authors are Fritz, Karen R. Adams of Crow Canyon Archaeological Center, John R. Roney of Colinas Cultural Resource Consulting and A.C. MacWilliams of University of Calgary.

Full text of the study is available at http://www.pnas.org/content/early/2009/12/03/0906075106

Gayle Fritz
Professor of anthropology at Washington University in St. Louis
gjfritz@artsci.wustl.edu
314-935-8588

Gayle Fritz | Newswise Science News
Further information:
http://www.wustl.edu
http://www.pnas.org/content/early/2009/12/03/0906075106

Further reports about: Diffusion Impact Science TV Uto-Aztecan-speaking crops maize

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>