Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Cereals for Increased Crop Yields

20.06.2011
University of Adelaide computer scientists are developing image-based technology which promises a major boost to the breeding of improved cereal varieties for the harsher environmental conditions expected under climate change.

Led by Professor Anton van den Hengel, Director of the Australian Centre for Visual Technologies (ACVT), the computer scientists are joining with plant physiologists and an industry partner to develop technology that will be able to accurately estimate plant yield of potential new cereal varieties well before grain production.

They will use multiple images of plants as they grow to construct computerised 3-D models that will match the plants’ changing “shape” with its biological properties and, ultimately, predict yield.

"We are using image analysis to understand the shape of plants so that we can automatically and rapidly measure plant structural properties and how they change over time," said Professor van den Hengel.

"We want to be able to predict yield based on a collection of measurable plant attributes early in the plant’s lifespan, rather than having to wait for the plant to mature and then measuring the yield."

Professor van den Hengel said this image-based approach would enable detailed, accurate and rapid estimation of large numbers of plants’ potential yields under various growing conditions, for example high salinity or drought.

"This novel image analysis technology promises to transform crop breeding and, as a result, the agricultural industry," he said.

"By expediting the development of plant varieties capable of delivering increased yield under harsh environmental conditions this project will help improve Australia’s agricultural efficiency and competitiveness. It will help Australian agriculture prepare for the impact of climate change and the need to produce more food for a growing population."

The image-based analysis will be incorporated into the Plant Accelerator at the University’s Waite Campus. Opened last year, the Plant Accelerator houses more than 1km of conveyor systems that deliver plants automatically to the imaging and other stations.

The project, 'Improving yield through image-based structural analysis of cereals', has been funded under the latest round of Australian Research Council Linkage Projects.

Other chief investigators for the project are Professor Mark Tester, Professor of Plant Physiology in the School of Agriculture, Food and Wine and Director of the Plant Accelerator, and Dr Anthony Dick, Deputy Director of the ACVT. The ACVT is a University of Adelaide research centre housed within the School of Computer Science.

The project involves industry partner LemnaTec, which provided some of the equipment used in the Plant Accelerator. They will help commercialise the technology.

Media Contact:
Professor Anton van den Hengel
Director, Australian Centre for Visual Technologies
School of Computer Science
The University of Adelaide
Phone: +61 8 8303 5309
Mobile: +61 414 268 662
anton.vandenhengel@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8303 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>