Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Cereals for Increased Crop Yields

20.06.2011
University of Adelaide computer scientists are developing image-based technology which promises a major boost to the breeding of improved cereal varieties for the harsher environmental conditions expected under climate change.

Led by Professor Anton van den Hengel, Director of the Australian Centre for Visual Technologies (ACVT), the computer scientists are joining with plant physiologists and an industry partner to develop technology that will be able to accurately estimate plant yield of potential new cereal varieties well before grain production.

They will use multiple images of plants as they grow to construct computerised 3-D models that will match the plants’ changing “shape” with its biological properties and, ultimately, predict yield.

"We are using image analysis to understand the shape of plants so that we can automatically and rapidly measure plant structural properties and how they change over time," said Professor van den Hengel.

"We want to be able to predict yield based on a collection of measurable plant attributes early in the plant’s lifespan, rather than having to wait for the plant to mature and then measuring the yield."

Professor van den Hengel said this image-based approach would enable detailed, accurate and rapid estimation of large numbers of plants’ potential yields under various growing conditions, for example high salinity or drought.

"This novel image analysis technology promises to transform crop breeding and, as a result, the agricultural industry," he said.

"By expediting the development of plant varieties capable of delivering increased yield under harsh environmental conditions this project will help improve Australia’s agricultural efficiency and competitiveness. It will help Australian agriculture prepare for the impact of climate change and the need to produce more food for a growing population."

The image-based analysis will be incorporated into the Plant Accelerator at the University’s Waite Campus. Opened last year, the Plant Accelerator houses more than 1km of conveyor systems that deliver plants automatically to the imaging and other stations.

The project, 'Improving yield through image-based structural analysis of cereals', has been funded under the latest round of Australian Research Council Linkage Projects.

Other chief investigators for the project are Professor Mark Tester, Professor of Plant Physiology in the School of Agriculture, Food and Wine and Director of the Plant Accelerator, and Dr Anthony Dick, Deputy Director of the ACVT. The ACVT is a University of Adelaide research centre housed within the School of Computer Science.

The project involves industry partner LemnaTec, which provided some of the equipment used in the Plant Accelerator. They will help commercialise the technology.

Media Contact:
Professor Anton van den Hengel
Director, Australian Centre for Visual Technologies
School of Computer Science
The University of Adelaide
Phone: +61 8 8303 5309
Mobile: +61 414 268 662
anton.vandenhengel@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8303 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>