Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois Soil Nitrogen Test Measures Microbial Nitrogen

13.05.2009
A University of Illinois study takes an in-depth look at the Illinois Soil Nitrogen Test to clarify the chemical nature of the test and its relationship to the microbial growth in soils.

Contrary to the prevailing view, cereal crops derive the majority of their nitrogen from the soil, not fertilizer. Soils differ considerably in microbial activities that determine nitrogen-supplying power, and these differences must be taken into account if nitrogen fertilizers are to be used efficiently.

The Illinois Soil Nitrogen Test (ISNT) was developed for this purpose, and involves estimation of gaseous ammonia liberated by heating the soil with strong alkali in a Mason jar. Several studies have provided evidence that the ISNT is predictive of yield response by corn to nitrogen fertilization, but there have also been negative evaluations in which concern has been raised that test values represent a constant proportion of total soil nitrogen rather than a microbial fraction that would be potentially available.

A study was conducted from 2004 to 2006 at the University of Illinois to clarify the chemical nature of what the ISNT measures and its relationship to microbial growth in agricultural soils. A multifaceted approach was taken, involving recovery tests with pure organic nitrogen compounds, statistical analyses of different nitrogen fractions measured for 26 Illinois agricultural soils, and incubation studies to determine incorporation of labeled nitrogen into soil nitrogen fractions. Results from the study were published in the May-June issue of the Soil Science Society of America Journal. The research was funded by the USDA and the Illinois Council on Food and Agricultural Research (C-FAR).

Recovery tests did not support the concept that the ISNT estimates total soil nitrogen. Rather, the results confirmed that the ISNT is selective for certain forms of microbial nitrogen, and differs from conventional acid-hydrolyzable fractions in the proportions of these compounds that are detected. Specifically, amides and the amino sugars in bacterial cell walls were detected, but not alpha-amino acids or fungal chitin. When the findings were applied in a statistical analysis of data from soil nitrogen fractionation, the ISNT was estimated to recover 95% of the nitrogen in bacterial amino sugars and 43% of amide-nitrogen. The incubation studies showed that labeling was more rapid for nitrogen recovered by the ISNT than in hydrolyzable amino sugars, again indicating a dominance of bacterial over fungal nitrogen recoveries by the ISNT.

Taken together, these findings suggest that the ISNT mainly detects bacterial amino sugars and implicates this form of soil nitrogen in the test’s effectiveness for predicting the response of corn to nitrogen fertilization. Because the ISNT also detects some amide nitrogen, the bacterial amino sugar nitrogen signal can be obscured in soils where these components are highly variable.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/73/3/1033.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>