Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice storms devastating to pecan orchards

26.03.2009
Study shows economic impact of storm damage, recovery efforts

Ice storms and other severe weather can have devastating impacts on agricultural crops, including perennial tree crops. Major ice storms occur at least once a decade, with truly catastrophic "icing events" recorded once or twice a century within a broad belt extending from eastern Texas through New England. Ice storms can result in overwhelming losses to orchards and expensive cleanup for producers.

Because the long limbs of pecan trees act as levers and increase the likelihood of breakage, pecan orchards and groves are particularly susceptible to damage from tornadoes, hurricanes, and ice storms. Ice damage is typically more severe in pecan orchards than other orchard crops.

Oklahoma has 85,740 acres of pecans on 2,879 farms. Ice storms struck Oklahoma four times from 2000 through 2007. The crippling ice storm in December 2000, which hit the southeast quarter of Oklahoma, extended into parts of Texas, Louisiana, and Arkansas. An estimated 25,000 to 30,000 acres of pecans were damaged in Oklahoma during this storm alone.

Michael W. Smith from the Department of Horticulture and Landscape Architecture at Oklahoma State University, and Charles T. Rohla of the Samuel Roberts Noble Foundation published a research report in the latest issue of HortTechnology that provides pecan producers, government agencies, and insurance companies with important information concerning orchard management and economics following destructive ice storms.

Cleanup of pecan orchards following ice damage presents enormous challenges for producers. Typical damage, cleanup, and recovery from four ice storms that hit the region from 2000 to 2007 were reported in the study. Trees less than 15 feet tall typically had the least damage; trees 15 to 30 feet tall incurred as much or more damage than larger trees and cleanup costs were greater.

The silver lining: pecan trees are resilient. Most trees can survive and eventually return to productivity following loss of most of their crown. But cleanup costs to ice-damaged pecan orchards are high, ranging from $207 to $419 per acre based on the dollar value in 2008. According to the researchers, these costs were consistent among orchards where the owner supervised the labor and had the resources to obtain equipment necessary to prune and remove debris from the orchard. The cleanup costs paid to "custom operators" for renovating orchards following ice storms were significantly more expensive, ranging from $500 to $800 per acre in 2008 for orchards with similar damage levels.

Explaining the outcomes of the research study, Smith stated; "Following damaging weather events, producers seek information concerning effective cleanup procedures, subsequent management, recovery duration, and economic impact. State and Federal agencies and insurance companies seek guidance concerning economic impact and how to assist producers. Our objective was to provide information for producers and others regarding the impact of an ice storm on pecans."

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/1/83

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>