Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hyperspectral imaging speeds detection of Campylobacter

A type of high-tech imaging can be used to distinguish the foodborne pathogen Campylobacter from other microorganisms as quickly as 24 hours after a sample is placed on solid media in a Petri dish, according to a study published by U.S. Department of Agriculture (USDA) scientists.

The researchers, with USDA's Agricultural Research Service (ARS), used technology called hyperspectral imaging, which combines digital imaging with spectroscopy, to provide hundreds of individual wavelength measurements for each image pixel. ARS is USDA's principal intramural scientific research agency.

According to the study, microorganisms grown on solid media carry unique spectral fingerprints in the specific portion of the electromagnetic spectrum. A hyperspectral imager identifies these fingerprints by measuring light waves that bounce off or through these objects.

Unlike the human eye, which sees only visible light, hyperspectral imaging can detect visible light as well as light from the ultraviolet to near-infrared ranges. Hyperspectral imaging may also be applicable to other pathogen detection studies.

Campylobacter infections in humans are a major cause of bacterial foodborne illness both in the United States and other countries throughout the world. Growing Campylobacter directly on solid media has been an effective method to isolate this organism, but distinguishing Campylobacter from non-Campylobacter microorganisms is difficult because different bacteria can often look very similar.

A research team led by ARS electronics engineer Seung-Chul Yoon at the agency's Quality and Safety Assessment Research Unit in Athens, Ga., developed the imaging technique to detect Campylobacter colonies on solid media in 24 hours. Normally, isolation and detection for identification of Campylobacter from foods like raw chicken involve time-consuming or complicated laboratory tests that may take several days to a week.

This "sensing" technology, which was nearly 100 percent accurate with pure cultures of the microorganisms, could be used for early detection of presumptive Campylobacter colonies in mixed cultures. The researchers are working toward developing a presumptive screening technique to detect Salmonella and Campylobacter in food samples.

Other ARS team members included research leader Kurt Lawrence, agricultural engineer Bosoon Park, animal physiologist William Windham, and food technologists John Line and Peggy Feldner. Line is at the ARS Poultry Microbiological Safety Research Unit, also in Athens. Gregory Siragusa of Danisco, in Waukesha, Wis., also collaborated on the study.

Findings from this study were published in the journal Sensing and Instrumentation for Food Quality and Safety. This research supports the USDA priority of ensuring food safety.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Sharon Durham | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>