Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much fertilizer is too much for the climate?

10.06.2014

Helping farmers around the globe apply more-precise amounts of nitrogen-based fertilizer can help combat climate change.

In a new study published in this week’s Proceedings of the National Academy of Sciences, Michigan State University researchers provide an improved prediction of nitrogen fertilizer’s contribution to greenhouse gas emissions from agricultural fields.


Phil Robertson, University Distinguished Professor of crop and soil sciences, has led the MSU Kellogg Biological Station Long-Term Ecological Research program for more than 20 years.

The study uses data from around the world to show that emissions of nitrous oxide, a greenhouse gas produced in the soil following nitrogen addition, rise faster than previously expected when fertilizer rates exceed crop needs.

Nitrogen-based fertilizers spur greenhouse gas emissions by stimulating microbes in the soil to produce more nitrous oxide.

Nitrous oxide is the third most important greenhouse gas, behind only carbon dioxide and methane, and also destroys stratospheric ozone. Agriculture accounts for around 80 percent of human-caused nitrous oxide emissions worldwide, which have increased substantially in recent years, primarily due to increased nitrogen fertilizer use.

“Our specific motivation is to learn where to best target agricultural efforts to slow global warming,” said Phil Robertson, director of MSU’s Kellogg Biological Station Long-term Ecological Research Program and senior author of the paper. “Agriculture accounts for 8 to 14 percent of all greenhouse gas production globally. We’re showing how farmers can help to reduce this number by applying nitrogen fertilizer more precisely.”

The production of nitrous oxide can be greatly reduced if the amount of fertilizer crops need is exactly the amount that’s applied to farmers’ fields. Simply put, when plant nitrogen needs are matched with the nitrogen that’s supplied, fertilizer has substantially less effect on greenhouse gas emission, Robertson said.

Iurii Shcherbak, lead author and MSU researcher, noted that the research also informs fertilizer practices in underfertilized areas such as sub-Saharan Africa. “Because nitrous oxide emissions won’t be accelerated by fertilizers until crop nitrogen needs are met, more nitrogen fertilizer can be added to underfertilized crops with little impact on emissions,” he said.

Adding less nitrogen to overfertilized crops elsewhere, however, would deliver major reductions to greenhouse gas emissions in those regions. This study provides support for expanding the use of carbon credits to pay farmers for better fertilizer management. Carbon credits for fertilizer management are now available to U.S. corn farmers.

This paper provides a framework for using this system around the world. The research was funded by the National Science Foundation, the Department of Energy’s Great Lakes Bioenergy Research Center and the Electric Power Research Institute. Robertson’s work also is funded in part by MSU AgBioresearch.

Layne Cameron | Eurek Alert!
Further information:
http://msutoday.msu.edu/news/2014/how-much-fertilizer-is-too-much-for-the-climate/

Further reports about: Foundation Lakes MSU crops dioxide emissions farmers fertilizer greenhouse nitrogen nitrous

More articles from Agricultural and Forestry Science:

nachricht Sequencing of barley genome achieves new milestone
26.08.2015 | University of California - Riverside

nachricht Entomologists sniff out new stink bug to help soybean farmers control damage
25.08.2015 | Texas A&M AgriLife Communications

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>