Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much fertilizer is too much for the climate?

10.06.2014

Helping farmers around the globe apply more-precise amounts of nitrogen-based fertilizer can help combat climate change.

In a new study published in this week’s Proceedings of the National Academy of Sciences, Michigan State University researchers provide an improved prediction of nitrogen fertilizer’s contribution to greenhouse gas emissions from agricultural fields.


Phil Robertson, University Distinguished Professor of crop and soil sciences, has led the MSU Kellogg Biological Station Long-Term Ecological Research program for more than 20 years.

The study uses data from around the world to show that emissions of nitrous oxide, a greenhouse gas produced in the soil following nitrogen addition, rise faster than previously expected when fertilizer rates exceed crop needs.

Nitrogen-based fertilizers spur greenhouse gas emissions by stimulating microbes in the soil to produce more nitrous oxide.

Nitrous oxide is the third most important greenhouse gas, behind only carbon dioxide and methane, and also destroys stratospheric ozone. Agriculture accounts for around 80 percent of human-caused nitrous oxide emissions worldwide, which have increased substantially in recent years, primarily due to increased nitrogen fertilizer use.

“Our specific motivation is to learn where to best target agricultural efforts to slow global warming,” said Phil Robertson, director of MSU’s Kellogg Biological Station Long-term Ecological Research Program and senior author of the paper. “Agriculture accounts for 8 to 14 percent of all greenhouse gas production globally. We’re showing how farmers can help to reduce this number by applying nitrogen fertilizer more precisely.”

The production of nitrous oxide can be greatly reduced if the amount of fertilizer crops need is exactly the amount that’s applied to farmers’ fields. Simply put, when plant nitrogen needs are matched with the nitrogen that’s supplied, fertilizer has substantially less effect on greenhouse gas emission, Robertson said.

Iurii Shcherbak, lead author and MSU researcher, noted that the research also informs fertilizer practices in underfertilized areas such as sub-Saharan Africa. “Because nitrous oxide emissions won’t be accelerated by fertilizers until crop nitrogen needs are met, more nitrogen fertilizer can be added to underfertilized crops with little impact on emissions,” he said.

Adding less nitrogen to overfertilized crops elsewhere, however, would deliver major reductions to greenhouse gas emissions in those regions. This study provides support for expanding the use of carbon credits to pay farmers for better fertilizer management. Carbon credits for fertilizer management are now available to U.S. corn farmers.

This paper provides a framework for using this system around the world. The research was funded by the National Science Foundation, the Department of Energy’s Great Lakes Bioenergy Research Center and the Electric Power Research Institute. Robertson’s work also is funded in part by MSU AgBioresearch.

Layne Cameron | Eurek Alert!
Further information:
http://msutoday.msu.edu/news/2014/how-much-fertilizer-is-too-much-for-the-climate/

Further reports about: Foundation Lakes MSU crops dioxide emissions farmers fertilizer greenhouse nitrogen nitrous

More articles from Agricultural and Forestry Science:

nachricht Crop advances grow with protection
28.04.2016 | American Society of Agronomy

nachricht Can urban gardeners benefit ecosystems while keeping food traditions alive?
06.04.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>