Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does hotter mean healthier?

05.02.2009
Relationship between chile peppers' heat level and plant disease resistance studied

Phytophthora blight, caused by Phytophthora capsici, is a major plant disease that affects many crop species worldwide, including chile peppers in New Mexico. Farmers' observations suggested that Phytophthora capsici caused less damage in pepper crops of the hot pepper varieties than low-heat pepper varieties.

A study published in the October 2008 issue of HortScience by the research team of Mohammed B. Tahboub (postdoctoral researcher), Soumaila Sanogo (plant pathologist and team leader), Paul W. Bosland (chile pepper breeder), and Leigh Murray (statistician) set out to determine whether or not the severity of Phytophthora blight would be greater in low-heat than in hot chile peppers.

The most effective means for controlling Phytophthora blight are chile pepper cultivars that are genetically resistant to the disease. Some resistant lines have been identified, but currently there are no cultivars that are resistant to the blight in all environments.

Chile pepper fruit become infected during prolonged periods of heavy rain and high humidity in flooded and poorly drained fields. Prior to this study, there had been no systematic assessment of the relationship of chile pepper heat level to chile pepper response to Phytophthora capsici. If such a connection could be found, information might have been revealed that would assist breeding programs intended for developing disease-resistant cultivars of pepper.

Based on documented field observations in New Mexico, Arizona, and South Carolina, the researchers hypothesized that peppers that produce high-heat fruits would be more resistant to Phytophthora blight than low-heat varieties. The study was conducted by observing infection on both the root and fruit of different varieties of peppers included.

The results of the study concluded, however, that there was no relationship between the heat level of the pepper and the plant's resistance to Phytophthora blight. For example, while the disease was slowest to develop on the roots of one variety of jalapeño, it was quickest to develop on the fruit of the same plant.

Conversely, the disease was faster to develop on roots and slower on fruit of all other cultivars. As the root of the plant contains no heat-inducing agents but the fruit does, the slow development on the root and rapid development on the fruit of the jalapeño indicates that heat level is not a factor.

The results of this study indicate that factors other than heat level may be involved in fruit response to Phytophthora capsici. Genetic differences and cuticle thickness of the plants and fruits are among other issues that could be relevant, but further study is warranted.

The complete study is available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/43/6/1846

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/43/6/1846

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>