Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does hotter mean healthier?

05.02.2009
Relationship between chile peppers' heat level and plant disease resistance studied

Phytophthora blight, caused by Phytophthora capsici, is a major plant disease that affects many crop species worldwide, including chile peppers in New Mexico. Farmers' observations suggested that Phytophthora capsici caused less damage in pepper crops of the hot pepper varieties than low-heat pepper varieties.

A study published in the October 2008 issue of HortScience by the research team of Mohammed B. Tahboub (postdoctoral researcher), Soumaila Sanogo (plant pathologist and team leader), Paul W. Bosland (chile pepper breeder), and Leigh Murray (statistician) set out to determine whether or not the severity of Phytophthora blight would be greater in low-heat than in hot chile peppers.

The most effective means for controlling Phytophthora blight are chile pepper cultivars that are genetically resistant to the disease. Some resistant lines have been identified, but currently there are no cultivars that are resistant to the blight in all environments.

Chile pepper fruit become infected during prolonged periods of heavy rain and high humidity in flooded and poorly drained fields. Prior to this study, there had been no systematic assessment of the relationship of chile pepper heat level to chile pepper response to Phytophthora capsici. If such a connection could be found, information might have been revealed that would assist breeding programs intended for developing disease-resistant cultivars of pepper.

Based on documented field observations in New Mexico, Arizona, and South Carolina, the researchers hypothesized that peppers that produce high-heat fruits would be more resistant to Phytophthora blight than low-heat varieties. The study was conducted by observing infection on both the root and fruit of different varieties of peppers included.

The results of the study concluded, however, that there was no relationship between the heat level of the pepper and the plant's resistance to Phytophthora blight. For example, while the disease was slowest to develop on the roots of one variety of jalapeño, it was quickest to develop on the fruit of the same plant.

Conversely, the disease was faster to develop on roots and slower on fruit of all other cultivars. As the root of the plant contains no heat-inducing agents but the fruit does, the slow development on the root and rapid development on the fruit of the jalapeño indicates that heat level is not a factor.

The results of this study indicate that factors other than heat level may be involved in fruit response to Phytophthora capsici. Genetic differences and cuticle thickness of the plants and fruits are among other issues that could be relevant, but further study is warranted.

The complete study is available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/43/6/1846

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/43/6/1846

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>