Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hogging the spotlight: South Farms pig gets international attention

A detailed annotation of the genome of T.J. Tabasco, a pig from the University of Illinois South Farms, is the outcome of over 10 years of work by an international consortium. It is expected to speed progress in both biomedical and agricultural research. U of I Vice President for Research Lawrence Schook said that the College of ACES played a crucial role in getting the work started.

Funding that came through ACES allowed Schook and others to put together the Swine Genome Sequencing Consortium, an alliance of university, industry, and government laboratories in the U.S., Europe, and Asia. The USDA committed 10 million dollars to the project. Today the project includes scientists from more than 50 research groups.

Schook said that the project has three main objectives: (1) to serve as a blueprint for understanding evolution and domestication, (2) to advance research on animal production and health, and (3) to explore ways to use the pig in biomedical applications.

The first publication, which just appeared in Nature, focuses on the pig's evolution. Researchers compared the reference genome from T.J. Tabasco with genomes of wild and domestic pigs from Europe and Asia (including archaeological and museum samples), and to human, mouse, dog, horse, and cow genomes.

"The pig is interesting because the wild boar still exists," Schook explained. "We could look at domestication, and we also looked at speciation. From an evolutionary perspective, these Sus species diverge in a very short time."

The researchers traced the domestic pig back to Southeast Asia. From there, it spread across Eurasia. The glaciation period separated the pigs into two groups about one million years ago. Today they are almost sub-species. "However, their chromosome structures have stayed very similar," Schook noted.

Pigs were independently domesticated in western Eurasia and East Asia 10,000 to 15,000 years ago. There is evidence that as the early European settlers moved around, they bred the domesticated females with wild boars.

Pigs in Central and South America are thought to have originated on the Iberian Peninsula. In a paper soon to be published in Heredity, the researchers tracked how these pigs adapted to different climates, altitudes, and diets.

As well as providing insights into how the pig evolved, the genome sequencing provides valuable new tools for animal breeding. One is a DNA test that can identify individual pigs that are less susceptible to certain diseases or have a genetic predisposition to fattening rapidly, eating less, and bearing many offspring.

On the biomedical side, researchers will build on ongoing efforts to use the pig to model human diseases, including lifestyle diseases such as obesity, diabetes, and cardiovascular disease. The sequencing identified 112 genes in pigs that are also responsible for diseases in people, suggesting that pigs could be used for drug testing.

Another direction is to use pigs as a source of organs for humans. Schook mentioned islet cells for diabetics as an example.

"Human transplant of eyelets doesn't work because there's not enough cells in a single pancreas," he explained. "If you could have an animal source, even if they get rejected, they're plentiful."

Clearly, there are a plenitude of exciting possibilities for future research. "For me, the next phase is looking at this concept of epigenomics–of how the environment affects gene expression," Schook said.

Other U of I researchers involved in the project are: Jon Beever, Laurie Rund, Sandra Rodriguez-Zas, Bruce Southy, and Jonathan Sweedler. Harris Lewin and Denis Larkin, who have left the U of I, are also part of the project.

The research was recently published in Nature and is available at

Susan Jongeneel | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>