Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hogging the spotlight: South Farms pig gets international attention

05.12.2012
A detailed annotation of the genome of T.J. Tabasco, a pig from the University of Illinois South Farms, is the outcome of over 10 years of work by an international consortium. It is expected to speed progress in both biomedical and agricultural research. U of I Vice President for Research Lawrence Schook said that the College of ACES played a crucial role in getting the work started.

Funding that came through ACES allowed Schook and others to put together the Swine Genome Sequencing Consortium, an alliance of university, industry, and government laboratories in the U.S., Europe, and Asia. The USDA committed 10 million dollars to the project. Today the project includes scientists from more than 50 research groups.

Schook said that the project has three main objectives: (1) to serve as a blueprint for understanding evolution and domestication, (2) to advance research on animal production and health, and (3) to explore ways to use the pig in biomedical applications.

The first publication, which just appeared in Nature, focuses on the pig's evolution. Researchers compared the reference genome from T.J. Tabasco with genomes of wild and domestic pigs from Europe and Asia (including archaeological and museum samples), and to human, mouse, dog, horse, and cow genomes.

"The pig is interesting because the wild boar still exists," Schook explained. "We could look at domestication, and we also looked at speciation. From an evolutionary perspective, these Sus species diverge in a very short time."

The researchers traced the domestic pig back to Southeast Asia. From there, it spread across Eurasia. The glaciation period separated the pigs into two groups about one million years ago. Today they are almost sub-species. "However, their chromosome structures have stayed very similar," Schook noted.

Pigs were independently domesticated in western Eurasia and East Asia 10,000 to 15,000 years ago. There is evidence that as the early European settlers moved around, they bred the domesticated females with wild boars.

Pigs in Central and South America are thought to have originated on the Iberian Peninsula. In a paper soon to be published in Heredity, the researchers tracked how these pigs adapted to different climates, altitudes, and diets.

As well as providing insights into how the pig evolved, the genome sequencing provides valuable new tools for animal breeding. One is a DNA test that can identify individual pigs that are less susceptible to certain diseases or have a genetic predisposition to fattening rapidly, eating less, and bearing many offspring.

On the biomedical side, researchers will build on ongoing efforts to use the pig to model human diseases, including lifestyle diseases such as obesity, diabetes, and cardiovascular disease. The sequencing identified 112 genes in pigs that are also responsible for diseases in people, suggesting that pigs could be used for drug testing.

Another direction is to use pigs as a source of organs for humans. Schook mentioned islet cells for diabetics as an example.

"Human transplant of eyelets doesn't work because there's not enough cells in a single pancreas," he explained. "If you could have an animal source, even if they get rejected, they're plentiful."

Clearly, there are a plenitude of exciting possibilities for future research. "For me, the next phase is looking at this concept of epigenomics–of how the environment affects gene expression," Schook said.

Other U of I researchers involved in the project are: Jon Beever, Laurie Rund, Sandra Rodriguez-Zas, Bruce Southy, and Jonathan Sweedler. Harris Lewin and Denis Larkin, who have left the U of I, are also part of the project.

The research was recently published in Nature and is available at http://www.nature.com/nature/journal/v491/n7424/full/nature11622.html.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>