Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Historical Increase in Corn Yield -- It’s in the Roots

The extraordinary yield advance within the U.S. Corn Belt over the past century has been a significant agricultural development associated with the breeding of hybrids and increased planting density. A new study examines how the root structure of corn has been one of the key factors in the efficiency of these crops.

One of the most significant developments in agricultural growth in modern times has been the continuous and substantial increase in corn yield over the past 80 years in the U.S. Corn Belt.

This extraordinary yield advance has been associated with both breeding of improved hybrids and the ability to grow them at increased density. In a new study, published in the January-February issue of Crop Science, researchers have investigated the importance of the effects of leaves and roots on this dramatic increase in yield in the U.S. Corn Belt, and have found that the root structure may be the key to understanding how these crops have grown so efficient.

One associated change in the traits of these corn crops has been a more erect leaf angle, which is known to create greater efficiency in converting incident light to biomass. Over the years, detailed studies have shown that the increase in total biomass accumulated through sustained photosynthesis is one of the key factors explaining the yield increase.

However, some studies have also shown that changes in the root system also have an effect, as newer hybrids appear more effective at extracting soil water from deep in the soil profile. There is some evidence suggesting that hybrids with narrower root angle have this capability. It is also plausible that decrease in root angle combined with growing plants at higher density could cause the increase in biomass accumulation. Root systems with improved occupancy of the soil at depth can extract more water to sustain biomass increase.

A team of scientists from Australia and the U.S.A., led by Professor Graeme Hammer of The University of Queensland (UQ), conducted this study on the leaves and roots of corn as part of an Australian Research Council linkage project with Pioneer Hi-Bred International. The project included scientists from UQ, Queensland Department of Primary Industries, and Pioneer.

Their approach involved the use of virtual plant computer simulation technologies. They modified an advanced crop model to take account of known effects on crop growth associated with varying leaf erectness and/or root system architecture. They then simulated consequences on yield for representative sites in the U.S. Corn Belt for a set of “hypothetical hybrids” varying in leaf and root characteristics.

The study revealed that the historical corn yield trend and its association with higher plant density was more likely related to change in root system architecture than to change in leaf erectness. While more erect leaf types could contribute to the effect in some high-yielding situations, changes in root systems to enhance capture of soil water at depth had the dominating effect. Results for simulations conducted for hypothetical hybrids that varied in root system characteristics were found to be consistent with a set of field experiments that reported yield response to density for hybrids released over the past 20 years.

“The use of dynamic crop models helped us to look beyond the clearly visible differences among hybrids in this time series of yield advance,” says Hammer. “It enabled us to focus on the driving processes of crop growth that must be responsible for these effects. It is clear that as we move forward we need to look much harder at root systems and how they capture water.”

In the study, the extra amount of water required for the 6t/ha historical yield increase was estimated as about 270mm. Further research is required to determine whether this has now positioned the corn crop near the limit of water resource availability or whether there remains opportunity for yield advance by further improvement in water capture.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>