Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-tech approach uses lights, action and camera to scrutinize fresh produce

High-tech tactics to carefully examine apples and other fresh produce items as they travel along packinghouse conveyor belts will help ensure the quality and safety of these good-for-you foods.

U.S. Department of Agriculture (USDA) scientists in Beltsville, Md., have developed and patented an experimental, cutting-edge optical scanning system that would use two different kinds of lighting, a sophisticated camera and other pieces of equipment to scrutinize produce-section favorites while they are still at the packinghouse.

The system would provide, in a single image, evidence of certain kinds of defects or contaminants, according to biophysicist Moon S. Kim with USDA's Agricultural Research Service (ARS). Defects could include cuts and bruises. Contaminants might include specks of fertilizer from orchard or field soil.

Kim, ARS agricultural engineers Yud-Ren Chen (now retired) and Kuanglin (Kevin) Chao, and ARS biomedical engineer Alan M. Lefcourt received a patent in 2010 for their automated approach to detecting defects and contaminants on the exterior of fresh produce or other items. The scientists work in the ARS Environmental Microbial and Food Safety Research Laboratory at Beltsville.

The team's system harnesses the capabilities of a type of camera known as a high-speed multispectral/hyperspectral line-scanner. Positioned above a conveyor belt, the scanner captures images of each fast-moving item, such as an apple. Each apple is exposed simultaneously to ultra-violet light from a UV fluorescent lamp and near infra-red light from a halogen lamp. The near infra-red light that bounces off the apple can be captured by an instrument known as a spectrograph and analyzed for tell-tale patterns of defects, while the UV light beamed on the apple can disclose the whereabouts of contaminants.

The system combines information from both forms of illumination into a single image with contaminant and defect results. When linked to a sorting machine, the system can signal the sorter to separate the problem apples from others.

At present, the system offers, at the rate of about 3 to 4 apples per second, a 180-degree view of each apple's exterior, Kim reports. The scientists are working to improve the process so it will provide a 360-degree whole-surface view for thorough inspection.

Preliminary findings from this work appeared in a 2008 issue of the journal Sensing and Instrumentation for Food Quality and Safety.

ARS is the USDA's chief intramural scientific research agency. The Beltsville team's investigations are helping enhance food safety, a USDA top priority.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Marcia Wood | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>