Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech approach uses lights, action and camera to scrutinize fresh produce

11.05.2011
High-tech tactics to carefully examine apples and other fresh produce items as they travel along packinghouse conveyor belts will help ensure the quality and safety of these good-for-you foods.

U.S. Department of Agriculture (USDA) scientists in Beltsville, Md., have developed and patented an experimental, cutting-edge optical scanning system that would use two different kinds of lighting, a sophisticated camera and other pieces of equipment to scrutinize produce-section favorites while they are still at the packinghouse.

The system would provide, in a single image, evidence of certain kinds of defects or contaminants, according to biophysicist Moon S. Kim with USDA's Agricultural Research Service (ARS). Defects could include cuts and bruises. Contaminants might include specks of fertilizer from orchard or field soil.

Kim, ARS agricultural engineers Yud-Ren Chen (now retired) and Kuanglin (Kevin) Chao, and ARS biomedical engineer Alan M. Lefcourt received a patent in 2010 for their automated approach to detecting defects and contaminants on the exterior of fresh produce or other items. The scientists work in the ARS Environmental Microbial and Food Safety Research Laboratory at Beltsville.

The team's system harnesses the capabilities of a type of camera known as a high-speed multispectral/hyperspectral line-scanner. Positioned above a conveyor belt, the scanner captures images of each fast-moving item, such as an apple. Each apple is exposed simultaneously to ultra-violet light from a UV fluorescent lamp and near infra-red light from a halogen lamp. The near infra-red light that bounces off the apple can be captured by an instrument known as a spectrograph and analyzed for tell-tale patterns of defects, while the UV light beamed on the apple can disclose the whereabouts of contaminants.

The system combines information from both forms of illumination into a single image with contaminant and defect results. When linked to a sorting machine, the system can signal the sorter to separate the problem apples from others.

At present, the system offers, at the rate of about 3 to 4 apples per second, a 180-degree view of each apple's exterior, Kim reports. The scientists are working to improve the process so it will provide a 360-degree whole-surface view for thorough inspection.

Preliminary findings from this work appeared in a 2008 issue of the journal Sensing and Instrumentation for Food Quality and Safety.

ARS is the USDA's chief intramural scientific research agency. The Beltsville team's investigations are helping enhance food safety, a USDA top priority.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Marcia Wood | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>