Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide-resistant grape could revitalize Midwest wine industry

16.10.2008
An herbicide that is effective at killing broadleaf weeds in corn, but also annihilated most of the grapes in Illinois and other Midwestern states, may finally have a worthy contender. Researchers at the University of Illinois have developed a new grape called Improved Chancellor which is resistant to the popular herbicide 2, 4-D.

"In 1946, 2,4-Dichlorophenoxyacetic or 2, 4-D was introduced. It was a wonder herbicide," said Robert Skirvin, plant biologist in the College ofAgriculture, Consumer and Environmental Sciences. "It works really well in corn and wheat and grass crops because it kills the broadleaves, so the grasses are resistant to it, but grapes are incredibly sensitive to it."

Skirvin said that 1/100th of the amount of 2, 4-D commonly used on corn to kill broadleaves, will kill grapes. Today, more than 50 years after it was introduced, it's still the third most widely used herbicide in the United States.

The discovery of the gene that makes Improved Chancellor resistant to 2, 4-D came about by accident. "The USDA found a soil bacterium that had a gene that breaks down 2, 4-D. Someone noticed that after spilling 2, 4-D on the ground, something in the soil broke it up – metabolized it. They were looking for something to control pollution and discovered this soil bacterium instead," said Robert Skirvin, plant biologist in the Collegeof Agriculture, Consumer and Environmental Sciences.

Skirvin received permission to use the bacterial gene and began in 2002 to transfer it to a grape that would ultimately be resistant to 2, 4-D. He and his graduate student Richard Mulwa followed standard genetic engineering techniques in order to transfer the gene to grape cells. "Selecting the transformed cells is the most delicate stage of the process because out of hundreds of thousands of cells, there may be only 25 cells that actually contain the gene," said Skirvin.

He explained that in order to locate the cells that have the gene, another gene that's an antibiotic to Kanamycin is inserted as a marker. The cells are then placed onto a medium that's very high in Kanamycin. All of the normal cells die. The only ones that will live are the ones with the antibiotic marker – which are also the cells that contain the 2, 4-D resistant gene. Stephen Farrand, a U of I microbiologist, assisted in all aspects of the gene transfer and Margaret Norton oversaw all of the tissue culture operation.

"Then we have to take the cells and regenerate them into plants. We use a tissue culture media and start the cells growing. After about two years in the lab, we had tiny seed-like shoots that developed from the transgenic grape cells. These were grown until they were big enough to be transferred to a limited access greenhouse where they were allowed to mature and produce fruit."

From these experiments, eight Chancellor plants were obtained; it was determined through DNA testing that only three of them had the herbicide resistant gene. Cuttings were taken of those three and planted. The plants were then sprayed with 2, 4-D. Each of the three Chancellor plants was tested at the equivalent amount of .5 kilograms per hectare of 2, 4-D, 5 kilograms per hectare and 10 kilograms per hectare, along with one of the original Chancellor plants as a control.

"It was quite an accomplishment to get the gene into the plant," said Skirvin. "This grape could help salvage the wine and grape industry in theMidwest." If all goes well, Skirvin hopes that in about five years they'll be able to work with a grape grower to produce wine using their new patented cultivar that they have named 'Improved Chancellor.'

Because the new grape is genetically modified it hasn't been tested outside of the greenhouse yet. Skirvin hopes to get permission to grow them in an isolation plot outdoors by spring 2009.

"We have to do tests to make sure that there aren't any poisonous compounds that would get into the grape or the wine. We'll test the grapes and after spraying with 2, 4-D check the break down products to find out where the 2, 4-D goes and what happens to the 2, 4-D after it enters the plant. The Improved Chancellor is resistant to 2, 4-D, but the herbicide must be going somewhere, so we need to make sure there are no harmful compounds in the fruit.

"After the grapes have been tested and found safe to eat, I think it's going to be beneficial to Minnesota, Nebraska, Illinois and other Midwestern states -- anywhere grain is grown and 2, 4-D is sprayed on the crops," said Skirvin.

"A grape resistant to 2, 4-D would be a huge plus to our industry," said Kansas grower Rebecca Storey. "As a vineyard and winery owner we have suffered losses from this chemical that runs in the tens of thousands of dollars -- not to mention the time and effort to identify the sprayer and prove the damage in a court of law. This grape would be a gift to our industry."

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>