Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide-resistant grape could revitalize Midwest wine industry

16.10.2008
An herbicide that is effective at killing broadleaf weeds in corn, but also annihilated most of the grapes in Illinois and other Midwestern states, may finally have a worthy contender. Researchers at the University of Illinois have developed a new grape called Improved Chancellor which is resistant to the popular herbicide 2, 4-D.

"In 1946, 2,4-Dichlorophenoxyacetic or 2, 4-D was introduced. It was a wonder herbicide," said Robert Skirvin, plant biologist in the College ofAgriculture, Consumer and Environmental Sciences. "It works really well in corn and wheat and grass crops because it kills the broadleaves, so the grasses are resistant to it, but grapes are incredibly sensitive to it."

Skirvin said that 1/100th of the amount of 2, 4-D commonly used on corn to kill broadleaves, will kill grapes. Today, more than 50 years after it was introduced, it's still the third most widely used herbicide in the United States.

The discovery of the gene that makes Improved Chancellor resistant to 2, 4-D came about by accident. "The USDA found a soil bacterium that had a gene that breaks down 2, 4-D. Someone noticed that after spilling 2, 4-D on the ground, something in the soil broke it up – metabolized it. They were looking for something to control pollution and discovered this soil bacterium instead," said Robert Skirvin, plant biologist in the Collegeof Agriculture, Consumer and Environmental Sciences.

Skirvin received permission to use the bacterial gene and began in 2002 to transfer it to a grape that would ultimately be resistant to 2, 4-D. He and his graduate student Richard Mulwa followed standard genetic engineering techniques in order to transfer the gene to grape cells. "Selecting the transformed cells is the most delicate stage of the process because out of hundreds of thousands of cells, there may be only 25 cells that actually contain the gene," said Skirvin.

He explained that in order to locate the cells that have the gene, another gene that's an antibiotic to Kanamycin is inserted as a marker. The cells are then placed onto a medium that's very high in Kanamycin. All of the normal cells die. The only ones that will live are the ones with the antibiotic marker – which are also the cells that contain the 2, 4-D resistant gene. Stephen Farrand, a U of I microbiologist, assisted in all aspects of the gene transfer and Margaret Norton oversaw all of the tissue culture operation.

"Then we have to take the cells and regenerate them into plants. We use a tissue culture media and start the cells growing. After about two years in the lab, we had tiny seed-like shoots that developed from the transgenic grape cells. These were grown until they were big enough to be transferred to a limited access greenhouse where they were allowed to mature and produce fruit."

From these experiments, eight Chancellor plants were obtained; it was determined through DNA testing that only three of them had the herbicide resistant gene. Cuttings were taken of those three and planted. The plants were then sprayed with 2, 4-D. Each of the three Chancellor plants was tested at the equivalent amount of .5 kilograms per hectare of 2, 4-D, 5 kilograms per hectare and 10 kilograms per hectare, along with one of the original Chancellor plants as a control.

"It was quite an accomplishment to get the gene into the plant," said Skirvin. "This grape could help salvage the wine and grape industry in theMidwest." If all goes well, Skirvin hopes that in about five years they'll be able to work with a grape grower to produce wine using their new patented cultivar that they have named 'Improved Chancellor.'

Because the new grape is genetically modified it hasn't been tested outside of the greenhouse yet. Skirvin hopes to get permission to grow them in an isolation plot outdoors by spring 2009.

"We have to do tests to make sure that there aren't any poisonous compounds that would get into the grape or the wine. We'll test the grapes and after spraying with 2, 4-D check the break down products to find out where the 2, 4-D goes and what happens to the 2, 4-D after it enters the plant. The Improved Chancellor is resistant to 2, 4-D, but the herbicide must be going somewhere, so we need to make sure there are no harmful compounds in the fruit.

"After the grapes have been tested and found safe to eat, I think it's going to be beneficial to Minnesota, Nebraska, Illinois and other Midwestern states -- anywhere grain is grown and 2, 4-D is sprayed on the crops," said Skirvin.

"A grape resistant to 2, 4-D would be a huge plus to our industry," said Kansas grower Rebecca Storey. "As a vineyard and winery owner we have suffered losses from this chemical that runs in the tens of thousands of dollars -- not to mention the time and effort to identify the sprayer and prove the damage in a court of law. This grape would be a gift to our industry."

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>