Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide-resistant grape could revitalize Midwest wine industry

16.10.2008
An herbicide that is effective at killing broadleaf weeds in corn, but also annihilated most of the grapes in Illinois and other Midwestern states, may finally have a worthy contender. Researchers at the University of Illinois have developed a new grape called Improved Chancellor which is resistant to the popular herbicide 2, 4-D.

"In 1946, 2,4-Dichlorophenoxyacetic or 2, 4-D was introduced. It was a wonder herbicide," said Robert Skirvin, plant biologist in the College ofAgriculture, Consumer and Environmental Sciences. "It works really well in corn and wheat and grass crops because it kills the broadleaves, so the grasses are resistant to it, but grapes are incredibly sensitive to it."

Skirvin said that 1/100th of the amount of 2, 4-D commonly used on corn to kill broadleaves, will kill grapes. Today, more than 50 years after it was introduced, it's still the third most widely used herbicide in the United States.

The discovery of the gene that makes Improved Chancellor resistant to 2, 4-D came about by accident. "The USDA found a soil bacterium that had a gene that breaks down 2, 4-D. Someone noticed that after spilling 2, 4-D on the ground, something in the soil broke it up – metabolized it. They were looking for something to control pollution and discovered this soil bacterium instead," said Robert Skirvin, plant biologist in the Collegeof Agriculture, Consumer and Environmental Sciences.

Skirvin received permission to use the bacterial gene and began in 2002 to transfer it to a grape that would ultimately be resistant to 2, 4-D. He and his graduate student Richard Mulwa followed standard genetic engineering techniques in order to transfer the gene to grape cells. "Selecting the transformed cells is the most delicate stage of the process because out of hundreds of thousands of cells, there may be only 25 cells that actually contain the gene," said Skirvin.

He explained that in order to locate the cells that have the gene, another gene that's an antibiotic to Kanamycin is inserted as a marker. The cells are then placed onto a medium that's very high in Kanamycin. All of the normal cells die. The only ones that will live are the ones with the antibiotic marker – which are also the cells that contain the 2, 4-D resistant gene. Stephen Farrand, a U of I microbiologist, assisted in all aspects of the gene transfer and Margaret Norton oversaw all of the tissue culture operation.

"Then we have to take the cells and regenerate them into plants. We use a tissue culture media and start the cells growing. After about two years in the lab, we had tiny seed-like shoots that developed from the transgenic grape cells. These were grown until they were big enough to be transferred to a limited access greenhouse where they were allowed to mature and produce fruit."

From these experiments, eight Chancellor plants were obtained; it was determined through DNA testing that only three of them had the herbicide resistant gene. Cuttings were taken of those three and planted. The plants were then sprayed with 2, 4-D. Each of the three Chancellor plants was tested at the equivalent amount of .5 kilograms per hectare of 2, 4-D, 5 kilograms per hectare and 10 kilograms per hectare, along with one of the original Chancellor plants as a control.

"It was quite an accomplishment to get the gene into the plant," said Skirvin. "This grape could help salvage the wine and grape industry in theMidwest." If all goes well, Skirvin hopes that in about five years they'll be able to work with a grape grower to produce wine using their new patented cultivar that they have named 'Improved Chancellor.'

Because the new grape is genetically modified it hasn't been tested outside of the greenhouse yet. Skirvin hopes to get permission to grow them in an isolation plot outdoors by spring 2009.

"We have to do tests to make sure that there aren't any poisonous compounds that would get into the grape or the wine. We'll test the grapes and after spraying with 2, 4-D check the break down products to find out where the 2, 4-D goes and what happens to the 2, 4-D after it enters the plant. The Improved Chancellor is resistant to 2, 4-D, but the herbicide must be going somewhere, so we need to make sure there are no harmful compounds in the fruit.

"After the grapes have been tested and found safe to eat, I think it's going to be beneficial to Minnesota, Nebraska, Illinois and other Midwestern states -- anywhere grain is grown and 2, 4-D is sprayed on the crops," said Skirvin.

"A grape resistant to 2, 4-D would be a huge plus to our industry," said Kansas grower Rebecca Storey. "As a vineyard and winery owner we have suffered losses from this chemical that runs in the tens of thousands of dollars -- not to mention the time and effort to identify the sprayer and prove the damage in a court of law. This grape would be a gift to our industry."

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>