Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Herbicide diversity needed to keep Roundup effective

Using a diverse herbicide application strategy may increase production costs, but a five-year Purdue University study shows the practice will drastically reduce weeds and seeds that are resistant to a popular herbicide.

Excess usage of glyphosate-resistant crops has led to weeds, such as marestail, that also are resistant to glyphosate, the herbicide used in Roundup. Bill Johnson, a Purdue associate professor of weed science, said changing management practices can almost eliminate resistant marestail and its viable seeds in the soil.

"Another herbicide application is expensive, and it means more trips across the field," Johnson said. "But we can reduce the population and density of resistant weeds, which increases the crop yield potential."

The results of Johnson's five-year study were published in the journal Weed Science.

Marestail, also known as horseweed, was the first weed to develop resistance to glyphosate. Other weeds also are adapting, Johnson said, reducing the effectiveness of products such as Roundup, the most widely used herbicide on the market.

It is Roundup's popularity that is contributing to its diminished effect. Johnson said farmers have come to rely on Roundup Ready crops that resist glyphosate as an easy way to control weeds. But overuse of any herbicide allows weeds to adapt and develop resistance.

Johnson's study found that farmers should diversify the herbicides they use. Using a variety of herbicides in addition to Roundup before planting and alternating between Roundup and other herbicides in corn can significantly reduce marestail.

Fields that had three resistant weeds for every susceptible weed while using only Roundup and Roundup Ready crops saw weed populations drop to one resistant weed for every six susceptible weeds while rotating herbicides as Johnson suggests. That rotation also may lead to a 95 percent decrease in the number of viable marestail seeds in the soil.

Continuing with only Roundup and Roundup Ready crops can intensify the problem, Johnson said.

"Glyphosate-resistant marestail develops very quickly in a field. Populations reach staggering levels of infestation in about two years after it is first detected," Johnson said. "For us, marestail being the first weed that developed resistance showed that a weed-management system that is solely reliant on glyphosate is starting to break down. However, a system that incorporates other herbicides with glyphosate can be sustainable for quite some time."

The Indiana Soybean Alliance, BASF, Dow AgroSystems, Monsanto and Syngenta funded Johnson's study. His next step is looking at management strategies that reduce the prevalence of other weeds that have built up resistance to glyphosate.

Writer: Brian Wallheimer, (765) 496-2050,
Source: Bill Johnson, (765) 494-4656,
Ag Communications: (765) 494-8415;
Steve Leer,

Brian Wallheimer | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>