Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide diversity needed to keep Roundup effective

15.07.2009
Using a diverse herbicide application strategy may increase production costs, but a five-year Purdue University study shows the practice will drastically reduce weeds and seeds that are resistant to a popular herbicide.

Excess usage of glyphosate-resistant crops has led to weeds, such as marestail, that also are resistant to glyphosate, the herbicide used in Roundup. Bill Johnson, a Purdue associate professor of weed science, said changing management practices can almost eliminate resistant marestail and its viable seeds in the soil.

"Another herbicide application is expensive, and it means more trips across the field," Johnson said. "But we can reduce the population and density of resistant weeds, which increases the crop yield potential."

The results of Johnson's five-year study were published in the journal Weed Science.

Marestail, also known as horseweed, was the first weed to develop resistance to glyphosate. Other weeds also are adapting, Johnson said, reducing the effectiveness of products such as Roundup, the most widely used herbicide on the market.

It is Roundup's popularity that is contributing to its diminished effect. Johnson said farmers have come to rely on Roundup Ready crops that resist glyphosate as an easy way to control weeds. But overuse of any herbicide allows weeds to adapt and develop resistance.

Johnson's study found that farmers should diversify the herbicides they use. Using a variety of herbicides in addition to Roundup before planting and alternating between Roundup and other herbicides in corn can significantly reduce marestail.

Fields that had three resistant weeds for every susceptible weed while using only Roundup and Roundup Ready crops saw weed populations drop to one resistant weed for every six susceptible weeds while rotating herbicides as Johnson suggests. That rotation also may lead to a 95 percent decrease in the number of viable marestail seeds in the soil.

Continuing with only Roundup and Roundup Ready crops can intensify the problem, Johnson said.

"Glyphosate-resistant marestail develops very quickly in a field. Populations reach staggering levels of infestation in about two years after it is first detected," Johnson said. "For us, marestail being the first weed that developed resistance showed that a weed-management system that is solely reliant on glyphosate is starting to break down. However, a system that incorporates other herbicides with glyphosate can be sustainable for quite some time."

The Indiana Soybean Alliance, BASF, Dow AgroSystems, Monsanto and Syngenta funded Johnson's study. His next step is looking at management strategies that reduce the prevalence of other weeds that have built up resistance to glyphosate.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Bill Johnson, (765) 494-4656, wgjohnso@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>