Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide may affect plants thought to be resistant

23.11.2011
Purdue University researchers have discovered a fine-tuning mechanism involved in plant root growth that has them questioning whether a popular herbicide may have unintended consequences, causing some plants to need more water or nutrients.

Angus Murphy, a professor of horticulture, and Wendy Peer, an assistant professor of horticulture, study the movement of auxin, a plant hormone essential for plant development. They showed that ABCB4, a protein responsible for moving auxin into cells, also removes the hormone when too much has accumulated.

"We knew that the protein took auxin up, but found that it switched to removing auxin when a threshold is reached," said Murphy, whose findings appeared in the early online version of The Plant Journal. "It starts transporting the hormones out."

That fine-tuning mechanism is integral to proper development of plant root hairs, which extend from the main plant root and are where most water and minerals enter.

"The root hairs are doing all the heavy lifting for bringing the water into the plant," Peer said. "And ABCB4 maintains the right auxin levels to keep root hairs growing optimally."

The herbicide 2,4-D, a synthetic form of auxin, could have unintended consequences for the protein, Murphy and Peer said.

The herbicide is used to kill broadleaf weeds, which are dicots, while monocot grasses, such as sorghum and corn, are more resistant. That's because grasses inactivate 2,4-D inside the plant, while broadleaf dicots do not.

But ABCB4 is located on the root surface and can be switched into intake-only mode, disabling its ability to remove excess auxin from cells, before 2,4-D can be inactivated inside the plant. This results in shorter root hairs.

"This suggests that ABCB4 is an unexpected target of 2,4-D action," Murphy said. "It's something that we have to be aware of with the commercial introduction of 2,4-D resistant soybeans and other dicot crops."

Murphy said laboratory testing of ABCB4 in yeast, tobacco and human cells subjected to 2,4-D all showed that ABCB4 could be locked into the uptake-only mode. The root hairs of mutant plants that had ABCB4 removed were not affected by application of 2,4-D.

"It was very clear that what was happening in the plant was what was happening in the cell cultures," Murphy said.

Murphy said the findings suggest that application techniques that limit 2,4-D entry into soils are important to ensure that production with engineered 2,4-D resistant crop plants does not require additional fertilizer and/or water inputs.

The Department of Energy funded the study. Murphy and Peer partnered with scientists at the Institute of Experimental Botany at the Academy of Sciences of the Czech Republic.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Angus Murphy, 765-496-7956, murphy@purdue.edu

Wendy Peer, 765-496-7958, peerw@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>