Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide may affect plants thought to be resistant

23.11.2011
Purdue University researchers have discovered a fine-tuning mechanism involved in plant root growth that has them questioning whether a popular herbicide may have unintended consequences, causing some plants to need more water or nutrients.

Angus Murphy, a professor of horticulture, and Wendy Peer, an assistant professor of horticulture, study the movement of auxin, a plant hormone essential for plant development. They showed that ABCB4, a protein responsible for moving auxin into cells, also removes the hormone when too much has accumulated.

"We knew that the protein took auxin up, but found that it switched to removing auxin when a threshold is reached," said Murphy, whose findings appeared in the early online version of The Plant Journal. "It starts transporting the hormones out."

That fine-tuning mechanism is integral to proper development of plant root hairs, which extend from the main plant root and are where most water and minerals enter.

"The root hairs are doing all the heavy lifting for bringing the water into the plant," Peer said. "And ABCB4 maintains the right auxin levels to keep root hairs growing optimally."

The herbicide 2,4-D, a synthetic form of auxin, could have unintended consequences for the protein, Murphy and Peer said.

The herbicide is used to kill broadleaf weeds, which are dicots, while monocot grasses, such as sorghum and corn, are more resistant. That's because grasses inactivate 2,4-D inside the plant, while broadleaf dicots do not.

But ABCB4 is located on the root surface and can be switched into intake-only mode, disabling its ability to remove excess auxin from cells, before 2,4-D can be inactivated inside the plant. This results in shorter root hairs.

"This suggests that ABCB4 is an unexpected target of 2,4-D action," Murphy said. "It's something that we have to be aware of with the commercial introduction of 2,4-D resistant soybeans and other dicot crops."

Murphy said laboratory testing of ABCB4 in yeast, tobacco and human cells subjected to 2,4-D all showed that ABCB4 could be locked into the uptake-only mode. The root hairs of mutant plants that had ABCB4 removed were not affected by application of 2,4-D.

"It was very clear that what was happening in the plant was what was happening in the cell cultures," Murphy said.

Murphy said the findings suggest that application techniques that limit 2,4-D entry into soils are important to ensure that production with engineered 2,4-D resistant crop plants does not require additional fertilizer and/or water inputs.

The Department of Energy funded the study. Murphy and Peer partnered with scientists at the Institute of Experimental Botany at the Academy of Sciences of the Czech Republic.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Angus Murphy, 765-496-7956, murphy@purdue.edu

Wendy Peer, 765-496-7958, peerw@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>