Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015

UMass Amherst researchers identify a key molecule in nitrogen-fixing bacteria

Molecular biologists at the University of Massachusetts Amherst who study nitrogen-fixing bacteria in plants have discovered a "double agent" peptide in an alfalfa that may hold promise for improving crop yields without increasing fertilizer use.


UMass Amherst researchers identified a key molecule in nitrogen-fixing bacteria, here stained green, that take residence in host cells. Host nuceli are stained red.

Credit: UMass Amherst/Chris Waters

In the current early online edition of Proceedings of the National Academy of Sciences, lead author and postdoctoral researcher Minsoo Kim, former undergraduate student Chris Waters, and professor Dong Wang of UMass Amherst's biochemistry and molecular biology department, with colleagues at the Noble Foundation in Oklahoma, report that alfalfa appears to use an advanced process for putting nitrogen-fixing bacteria, rhizobia, to work more effectively after they are recruited from soil to fix nitrogen in special nodules on plant roots.

As Wang and Kim explain, legumes attract nitrogen-fixing bacteria to their roots from the surrounding soil. Once inside the host plant, rhizobia form nodules on its roots and the plant starts to transform the bacteria into their nitrogen-fixing state. In return for borrowing the rhizobia's essential enzymes that turn nitrogen into useful ammonia, the plant gives the bacteria fixed carbon, the product of photosynthesis.

In alfalfa, this transformation of bacteria is called differentiation, which Wang likens to domestication, because it makes the bacteria reliant on their plant host. "They are no longer wild and able to live outside the plant," he says. "I think of it as analogous to domestication of animals by humans." He adds, "Bacteria that can no longer proliferate as free-living individuals are a bit like slaves at that point, living to serve the plant."

At the molecular level, plant peptides found exclusively in the nodule, known as NCR peptides, act on the bacteria in the differentiation process. By studying this differentiation processes in an alfalfa-clover, Medicago truncatula, the researchers discovered that one of these peptides, DNF4, also known as NCR211, can act as a sort of double agent, Wang says. DNF4 supports nitrogen-fixing bacteria when inside the plant, but its actions can kill free-living bacteria outside.

"At first sight, it may appear perplexing that DNF4/NCR211 supports the survival of differentiating bacteria in plants while also blocking free-living bacteria from forming colonies in culture," Wang and Kim write.

However, the two activities may actually reflect similar action by NCR211 on bacteria in different physiological states. The dual effect of DNF4/NCR211 may reflect a mechanism to ensure that the rhizobia stay in a properly differentiated state, say the authors. Host control of bacteria differentiation has evolved in multiple lineages of legumes, indicating a possible fitness benefit to the host plant. Furthermore, nodules with differentiated bacteroids returned more benefit to the host. Curiously, the legume with the most economic value, soybean, doesn't seem to have evolved this strategy, opening possible avenues to improve their yield.

Wang says, "We haven't solved it all yet," but discovering NCR211 peptides that maintain bacterial survival inside host cells may turn out to be a key factor in future efforts to improve legume crops without using more fertilizer, which would be an important advance for farming in developing countries and organic farming in the developed world.

"Next we want to find out why this peptide helps the bacteria inside the plant, but it can kill free-living bacteria outside the plant. Why does one molecule function as a double agent?"

Wang says that in a companion study also appearing in PNAS, Price et al. at Brigham Young University recovered a bacterial peptidase capable of degrading host NCR peptides. "This collection of discoveries demonstrates the evolving nature in controlling bacterial differentiation in classical host-microbe mutualism," Wang and Kim conclude.

###

Funding for this work was from the University of Massachusetts Amherst.

Media Contact

Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

Further reports about: Amherst bacteria crop crop yields fertilizer nitrogen nitrogen-fixing bacteria peptides rhizobia

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>