Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growstones ideal alternative to perlite, parboiled rice hulls

15.12.2011
Substrate made from waste glass performs well in greenhouse applications

In the greenhouse business, organic and inorganic growing substrates are chosen for the physical and chemical properties necessary to support specific crops and growing conditions. One important physical property in substrates is air-filled pore space, a particularly important characteristic that allows for gas exchange between plants' roots and the outside atmosphere.

Perlite and parboiled rice hulls are the two of the most common components used to increase air-filled pore space (AFP) in substrates. A study compared these popular components to Growstones, an aggregate produced from finely ground waste glass.

Although they are widely used in horticulture applications, both perlite and parboiled rice hulls have disadvantages and limitations. Perlite, a natural glass of volcanic origin that expands when quickly heated, has become increasingly expensive due to costs of mining, transportation, and production. In addition to its rising price tag, perlite produces a siliceous dust that is an eye and lung irritant. Parboiled rice hulls (PBH) are produced only in specific areas of the United States, making high shipping costs an issue for end-users. And, because it is a plant-based component, PBH may also have limitations with respect to its use in long-term crops because of softening and decomposition.

Michael R. Evans, Professor in the Department of Horticulture at the University of Arkansas, created experiments to compare perlite and PBH with Growstones. Evans' results were published in HortTechnology. According to Evans, aggregates such as Growstones (produced by Earthstone Corp., Santa Fe, NM) have been proposed as alternatives to perlite and PBH to adjust the physical properties of peat-based substrates.

Growstones, which have been successfully used as a hydroponic substrate, are produced from finely ground waste glass. The ground glass powder is combined with calcium carbonate and heated in a kiln. Carbon dioxide is produced as the glass particles are heated and fused together, trapping air spaces inside the glass. The result is an expanded, lightweight product that is cooled before being ground to the desired size.

Evans' experiments showed that Growstones had an AFP higher than that of both peat and perlite. Additionally, when added to peat at a concentration of at least 15%, Growstones increased the AFP of the resulting peat-based substrate.

"Growstones can be used in a similar manner to perlite and PBH as an aggregate to increase AFP of peat based substrates", Evans said. "The primary differences were that, at concentrations of 25% or more, GS resulted in a higher AFP than equivalent perlite-containing substrates. Also, substrates containing 20% or more GS had a higher water-holding capacity than equivalent perlite- and PBH-containing substrates, and GS-containing substrates had a higher bulk density than equivalent perlite- and PBH-containing substrates."

All GS-containing substrates had physical properties within recommended ranges. Vinca, impatiens, and geranium plugs grown in GS-containing substrates were comparable to plants grown in equivalent perlite- and PBH-containing substrates.

Evans said that the experiments showed that Growstones can be successfully used as a component for substrates used in greenhouse crop production.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/21/1/30

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>