Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Coffee-Growing Practices Buffer Climate-Change Impacts

02.10.2008
Chalk up another environmental benefit for shade-grown Latin American coffee: University of Michigan researchers say the technique will provide a buffer against the ravages of climate change in the coming decades.

Over the last three decades, many Latin American coffee farmers have abandoned traditional shade-growing techniques, in which the plants are grown beneath a diverse canopy of trees. In an effort to increase production, much of the acreage has been converted to "sun coffee," which involves thinning or removing the canopy.

Shade-grown farms boost biodiversity by providing a haven for birds and other animals. They also require far less synthetic fertilizer, pesticides and herbicides than sun-coffee plantations.

In the October edition of the journal BioScience, three U-M researchers say shade-growing also shields coffee plants during extreme weather events, such as droughts and severe storms. Climate models predict that extreme weather events will become increasingly common in the coming decades, as the levels of heat-trapping carbon dioxide gas continue to mount.

The U-M scientists warn Latin American farmers of the risks tied to "coffee-intensification programs"---a package of technologies that includes the thinning of canopies and the use of high-yield coffee strains that grow best in direct sunlight---and urge them to consider the greener alternative: shade-grown coffee.

"This is a warning against the continuation of this trend toward more intensive systems," said Ivette Perfecto of the U-M School of Natural Resources and Environment, one of the authors. "Shaded coffee is ideal because it will buffer the system from climate change while protecting biodiversity."

Perfecto has studied biodiversity in Latin American coffee plantations for 20 years. The lead author of the BioScience paper is Brenda Lin, whose 2006 U-M doctoral dissertation examined microclimate variability under different shade conditions at Mexican coffee plantations.

Lin is currently a Science and Technology Policy Fellow with the American Association for the Advancement of Science in Washington, D.C. The other author of the BioScience paper is John Vandermeer of the U-M Department of Ecology and Evolutionary Biology.

The livelihoods of more than 100 million people worldwide are tied to coffee production. In Latin America, most coffee farms lack irrigation---relying solely on rainwater---which makes them especially vulnerable to drought and heat waves.

Shade trees help dampen the effects of drought and heat waves by maintaining a cool, moist microclimate beneath the canopy. The optimal temperature range for growing common Arabica coffee is 64 to 70 degrees Fahrenheit.

Shade trees also act as windbreaks during storms and help reduce runoff and erosion.

Lin's work in southern Mexico showed that shady farms have greater water availability than sunny farms, due in part to lower evaporation rates from the coffee plants and soils. More shade also reduced peak temperatures between 10 a.m. and 2 p.m., when southern Mexican coffee plants experience the greatest heat stress.

"These two trends---increasing agricultural intensification and the trend toward more frequent extreme-weather events---will work in concert to increase farmer vulnerability," Lin said. "We should take advantage of the services the ecosystems naturally provide, and use them to protect farmers' livelihoods."

The study was funded by the National Security Education Program's David L. Boren Fellowship, the Lindbergh Foundation and the National Science Foundation.

More information about Ivette Perfecto is available at: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=599

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>