Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Coffee-Growing Practices Buffer Climate-Change Impacts

02.10.2008
Chalk up another environmental benefit for shade-grown Latin American coffee: University of Michigan researchers say the technique will provide a buffer against the ravages of climate change in the coming decades.

Over the last three decades, many Latin American coffee farmers have abandoned traditional shade-growing techniques, in which the plants are grown beneath a diverse canopy of trees. In an effort to increase production, much of the acreage has been converted to "sun coffee," which involves thinning or removing the canopy.

Shade-grown farms boost biodiversity by providing a haven for birds and other animals. They also require far less synthetic fertilizer, pesticides and herbicides than sun-coffee plantations.

In the October edition of the journal BioScience, three U-M researchers say shade-growing also shields coffee plants during extreme weather events, such as droughts and severe storms. Climate models predict that extreme weather events will become increasingly common in the coming decades, as the levels of heat-trapping carbon dioxide gas continue to mount.

The U-M scientists warn Latin American farmers of the risks tied to "coffee-intensification programs"---a package of technologies that includes the thinning of canopies and the use of high-yield coffee strains that grow best in direct sunlight---and urge them to consider the greener alternative: shade-grown coffee.

"This is a warning against the continuation of this trend toward more intensive systems," said Ivette Perfecto of the U-M School of Natural Resources and Environment, one of the authors. "Shaded coffee is ideal because it will buffer the system from climate change while protecting biodiversity."

Perfecto has studied biodiversity in Latin American coffee plantations for 20 years. The lead author of the BioScience paper is Brenda Lin, whose 2006 U-M doctoral dissertation examined microclimate variability under different shade conditions at Mexican coffee plantations.

Lin is currently a Science and Technology Policy Fellow with the American Association for the Advancement of Science in Washington, D.C. The other author of the BioScience paper is John Vandermeer of the U-M Department of Ecology and Evolutionary Biology.

The livelihoods of more than 100 million people worldwide are tied to coffee production. In Latin America, most coffee farms lack irrigation---relying solely on rainwater---which makes them especially vulnerable to drought and heat waves.

Shade trees help dampen the effects of drought and heat waves by maintaining a cool, moist microclimate beneath the canopy. The optimal temperature range for growing common Arabica coffee is 64 to 70 degrees Fahrenheit.

Shade trees also act as windbreaks during storms and help reduce runoff and erosion.

Lin's work in southern Mexico showed that shady farms have greater water availability than sunny farms, due in part to lower evaporation rates from the coffee plants and soils. More shade also reduced peak temperatures between 10 a.m. and 2 p.m., when southern Mexican coffee plants experience the greatest heat stress.

"These two trends---increasing agricultural intensification and the trend toward more frequent extreme-weather events---will work in concert to increase farmer vulnerability," Lin said. "We should take advantage of the services the ecosystems naturally provide, and use them to protect farmers' livelihoods."

The study was funded by the National Security Education Program's David L. Boren Fellowship, the Lindbergh Foundation and the National Science Foundation.

More information about Ivette Perfecto is available at: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=599

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>