Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greater-than-additive management effects key in reducing corn yield gaps

18.03.2015

While many recent studies have documented that agricultural producers must significantly increase yields in order to meet the food, feed, and fuel demands of a growing population, few have given practical solutions on how to do this. Crop science researchers at the University of Illinois interested in determining and reducing corn yield gaps are addressing this important issue by taking a systematic approach to the problem.

A recent study from the Illinois Crop Physiology Laboratory, led by Fred Below, a U of I crop physiologist, provides the first estimate of the corn yield gap for the U.S. Corn Belt. In order to quantify the corn yield gap, which they define as the difference between a farmer's actual yield and the potential yield for that field, researchers studied combinations of five different management factors in corn-following-soybean trials to determine their effect on yield, both individually and cumulatively.

By using an intensified management system that included increased plant population, transgenic (Bt trait) insect resistance, strobilurin-containing fungicide, balanced crop nutrition (phosphorus-sulfur-zinc), and supplemental side-dressed nitrogen, the researchers saw a yield increase of 28 percent more corn grain compared to that of a standard management system. This study indicates that corn yields in Illinois can be increased by about 28 percent using commercially available technologies and hybrids.

More important, the study concluded that no single factor or technology accounted for this increase in yields; rather, it was the result of a consistently observed greater-than-additive effect of factors acting together that produced the highest yields. All factors, except for plant population, were necessary for maximizing yield and reducing the yield gap.

"The objective of our study was to determine which common management practices were the most effective for increasing corn yields," said Laura Gentry, co-author of the study and adjunct professor at the U of I, as well as director of water quality research for the Illinois Corn Growers Association. "We wanted to see what happens if you use a 'traditional' versus an 'advanced' management approach that encompassed a variety of agronomic practices."

The design of the study, an incomplete factorial design commonly referred to as an addition/omission study, entailed applying each of the five management factors (plant population, transgenic trait, fungicide, nitrogen fertility, and phosphorus-sulfur-zinc fertility) at two levels (traditional and advanced). The design allowed for two important control treatments: high tech, in which all management factors are applied at the advanced level, and traditional, in which all management factors are applied at the lower level. "Omission treatments" were created by applying a single factor at the lower level while all other factors were maintained at the advanced levels.

Similarly, "addition treatments" were created by applying a single factor at the advanced level while maintaining all other factors at the lower level. The study also allowed the researchers to make several critical comparisons in order to estimate the yield value of each technology factor when it was a component of a traditional system of lower inputs and when it was a component of an advanced system of higher-level inputs.

Field trials were conducted during the 2009 and 2010 growing seasons at two sites: the Crop Sciences Research and Education Center in Champaign-Urbana (CU), and the Dixon Springs Research Center in southern Illinois (DS).

In addition to determining simple yield effects, the researchers also evaluated treatment effects on kernel number and kernel weight. They found that as each advanced factor was withheld from the high tech system, kernel number decreased. Kernel weight was only consistently affected by strobilurin fungicide application.

"If the goal is to feed nine billion people, we need to increase our productivity by 70 to 100 percent," Gentry said. "So it is valuable to know that most of our yield gain came from greater kernel number, and it was harder to influence kernel weight. This information has a variety of implications for corn breeding as well as management practices like plant population."

While the yield contribution of each factor was greatest when applied as part of the full complement of advanced-level inputs, Gentry explained that the two management factors that were consistently the most influential for increasing yields were the Bt-trait and the strobilurin-containing fungicide.

When the Bt-traited hybrid was omitted from the high tech system, they saw an 8.7 percent yield decrease and a yield increase of 4.5 percent when the Bt trait was added to the traditional system. "Farmers know that the hybrid trait is critical," Gentry said. "They pay more for the seed, but this study shows that they are compensated in terms of their yields. And, environmentally, we're applying less insecticides."

The contribution of the strobilurin-containing fungicide was unexpected by the researchers, especially during the 2010 growing season when conditions were dry. Applying strobilurin fungicide increased yield by 8.5 percent (CU) and 9.4 (DS) percent. Gentry said this may have been due to strobilurin's properties as a plant growth regulator, which kept leaves greener later in the season, and also that it may have accounted for a reduction in kernel abortion during the moderate drought.

Though the environments included in the study could have supported plant populations greater than 32,000 plants per acre, the study concluded that maintaining a lower plant population while supplying the other inputs at the advanced level neither increased nor decreased yield.

Will this intensified approach be economically possible for farmers? "That was not the focus of this study or the question we wanted to answer," Gentry said. "In all likelihood, our high technology treatment of advanced inputs would not prove to be the most profitable treatment despite producing the greatest yields.

"The value of the added yield would not compensate for the cost of the extra inputs, especially when corn prices are low. This study was a first step towards a greater understanding of how we can increase yields in the U.S. Corn Belt to meet increasing demand for corn," she added.

"This principle that there is a 'synergistic' or greater-than-additive yield response under more intensively managed systems is new knowledge. Corn yields with today's hybrids do have the potential to increase with the application of protection chemicals and by making crop nutrients more plant-available," she said.

Gentry added that the researchers hypothesize that corn yields can be further increased in a sustainable way, even beyond the results demonstrated in this study, with continued crop breeding efforts, advancements in fertilizer formulations and placement technology, and possibly, with the development of effective plant growth promoters, she said.

###

"Evaluating Management Factor Contributions to Reduce Corn Yield Gaps" was recently published in Agronomy Journal. Co-authors of the study were Matias L. Ruffo, Laura F. Gentry, Adam S. Henninger, Juliann R. Seebauer, and Frederick E. Below. The paper can be accessed online for free at: https://www.agronomy.org/publications/aj/articles/107/2/495.

Funding and in-kind support for this project was provided by BASF, Koch Industries Inc., Monsanto, and The Mosaic Company.

Media Contact

Stephanie Henry
slhenry@illinois.edu
217-244-1183

 @uignome

http://aces.illinois.edu/ 

Stephanie Henry | EurekAlert!

Further reports about: Corn Environmental Sciences Sciences corn yields crop fungicide

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>