Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good soil, good harvest

25.05.2012
New control system increases efficiency and prevents over-fertilization
No rain at all or rainfall which significantly fluctuates is a major problem for farmers, since long periods of drought increase the risk of a poor harvest and make nutrient input difficult. The aim of the “OPTIFERT” research project is to optimize the fertilization and irrigation of agricultural land in Europe by means of intelligent technology. The Optifert system is an integral system that will allow the farmer to optimize the fertilizer supply, reducing the costs and environmental risks of over-fertilization, by means of a closed control loop.

Over 9 million farmers in Europe are obliged to use an irrigation system on their fields. The amount of natural rainfall is often not sufficient to bring home a good harvest. Today, Europe’s farmers are irrigating an area of almost 200.000 km² and this will presumably increase, as the market for irrigation systems is growing rapidly. In the last ten years, the use of such systems rose annually by about 10 percent. Many systems have not however been developed with demand in mind and this often has a devastating impact on the environment: valuable water resources are squandered and fertilizers washed out. Over-fertilization (eutrophication) of land and waters are the result. Sustainable and intelligent solutions are therefore necessary.

Central pivot irrigations system with radio communicated soil sensor. Picture: Optifert


Moisture sensor in potato field. Picture: Optifert

It’s the mix that makes the difference: Nutrients and water are important factors for soil quality

Within “OPTIFERT” (http://www.optifert.eu), an EU-funded research project, a consortium led by ttz Bremerhaven is developing a demand-driven, fully automatic and combined irrigation and fertilization system. The partners from Poland, Great Britain, Austria and Germany want to enable farmers to control easily their use of water and fertilizer - in a way which is customized to each specific type of crop. The innovative system reduces water and fertilizer consumption and thus fosters sustainable, efficient and competitive agricultural production in Europe.

Depending on its requirements, the OPTIFERT system currently being developed supplies the crop in real time with water and nutrients: it combines irrigation with just-in-time fertilization. On the basis of various data, the required amounts of water and fertilizer are measured and calculated. This includes data from an innovative soil sensor system (pH, moisture, salinity, fertilizer concentration) as well as meteorological, crop physiology and market data. The OPTIFERT system comprises three main components: the soil sensor, the fertilizer mixing module including dosage system, and the control unit. These allow the system to fulfill efficiently the objective of demand-based fertilization and irrigation.

The “OPTIFERT” research project is being funded under the EU’s Seventh Framework Programme, will last two years and is co-ordinated by ttz Bremerhaven. Project partners are Hydro-Air GmbH, Pessl Instruments (METOS), Integrated Microsystems Austria GmbH, Soil Moisture Sense Ltd., Agrargesellschaft “Niederer Fläming” MBH Petkus, the University of Warmia and Mazury and the Technical University of Vienna. Further information about the project can be found under www.optifert.eu/.

ttz Bremerhaven is an provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health. http://www.ttz-bremerhaven.de

Contact:

ttz Bremerhaven
Christian Colmer, Head of Communication and Media
Fischkai 1
D-27572 Bremerhaven
Tel.: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 – 129
ccolmer@ttz-bremerhaven.de
http://www.ttz-bremerhaven.de
http://www.facebook.com/ttzBremerhaven
https://twitter.com/ttzBremerhaven

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de/
http://www.optifert.eu/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>