Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good soil, good harvest

25.05.2012
New control system increases efficiency and prevents over-fertilization
No rain at all or rainfall which significantly fluctuates is a major problem for farmers, since long periods of drought increase the risk of a poor harvest and make nutrient input difficult. The aim of the “OPTIFERT” research project is to optimize the fertilization and irrigation of agricultural land in Europe by means of intelligent technology. The Optifert system is an integral system that will allow the farmer to optimize the fertilizer supply, reducing the costs and environmental risks of over-fertilization, by means of a closed control loop.

Over 9 million farmers in Europe are obliged to use an irrigation system on their fields. The amount of natural rainfall is often not sufficient to bring home a good harvest. Today, Europe’s farmers are irrigating an area of almost 200.000 km² and this will presumably increase, as the market for irrigation systems is growing rapidly. In the last ten years, the use of such systems rose annually by about 10 percent. Many systems have not however been developed with demand in mind and this often has a devastating impact on the environment: valuable water resources are squandered and fertilizers washed out. Over-fertilization (eutrophication) of land and waters are the result. Sustainable and intelligent solutions are therefore necessary.

Central pivot irrigations system with radio communicated soil sensor. Picture: Optifert


Moisture sensor in potato field. Picture: Optifert

It’s the mix that makes the difference: Nutrients and water are important factors for soil quality

Within “OPTIFERT” (http://www.optifert.eu), an EU-funded research project, a consortium led by ttz Bremerhaven is developing a demand-driven, fully automatic and combined irrigation and fertilization system. The partners from Poland, Great Britain, Austria and Germany want to enable farmers to control easily their use of water and fertilizer - in a way which is customized to each specific type of crop. The innovative system reduces water and fertilizer consumption and thus fosters sustainable, efficient and competitive agricultural production in Europe.

Depending on its requirements, the OPTIFERT system currently being developed supplies the crop in real time with water and nutrients: it combines irrigation with just-in-time fertilization. On the basis of various data, the required amounts of water and fertilizer are measured and calculated. This includes data from an innovative soil sensor system (pH, moisture, salinity, fertilizer concentration) as well as meteorological, crop physiology and market data. The OPTIFERT system comprises three main components: the soil sensor, the fertilizer mixing module including dosage system, and the control unit. These allow the system to fulfill efficiently the objective of demand-based fertilization and irrigation.

The “OPTIFERT” research project is being funded under the EU’s Seventh Framework Programme, will last two years and is co-ordinated by ttz Bremerhaven. Project partners are Hydro-Air GmbH, Pessl Instruments (METOS), Integrated Microsystems Austria GmbH, Soil Moisture Sense Ltd., Agrargesellschaft “Niederer Fläming” MBH Petkus, the University of Warmia and Mazury and the Technical University of Vienna. Further information about the project can be found under www.optifert.eu/.

ttz Bremerhaven is an provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health. http://www.ttz-bremerhaven.de

Contact:

ttz Bremerhaven
Christian Colmer, Head of Communication and Media
Fischkai 1
D-27572 Bremerhaven
Tel.: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 – 129
ccolmer@ttz-bremerhaven.de
http://www.ttz-bremerhaven.de
http://www.facebook.com/ttzBremerhaven
https://twitter.com/ttzBremerhaven

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de/
http://www.optifert.eu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>