Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Good news for pigs

There are currently two methods for artificial insemination: bull semen can be frozen to a temperature of -172 °C and may be stored indefinitely.

However, pig semen must be diluted and stored liquid, and the storage capacity is only a few days. The window of opportunity for insemination is also limited. Striking the period when the sow is receptive is difficult and farmers need to inspect the animals regularly.

Achieving simpler insemination routines has therefore been an objective for Geno and Norsvin, the two national organisations that operate systematic rearing of cattle, horses and pigs.

“The timeframe from when a sperm dose for pigs is extracted until it must be utilised is five days,” says reproduction research scientist Ann Helen Gaustad at Norsvin. “Extending this by one to two days would be extremely significant.”

The two organisations contacted SINTEF in 2003 and with the assistance of funding from the Research Council of Norway a research project was commenced. Research scientists wanted to influence sperm cells to become capable of fertilising over a longer period. In 2008, the status is that the research scientists have developed a technique that moulds the sperm cells into an alginate gel. The cells can then be stored until the gel is inseminated into the animal.

“We have been trying to confirm a hypothesis that restricted tail movements of sperm cells, as is the case when they are in the animal’s testicles, provides longer lasting qualities,” says Geir Klinkenberg at SINTEF. “We achieve the restrictions by using the gel and the results to date are good. By achieving longer storage ability, it prolongs the lifespan of the sperm population in the uterus.”

High values
Insemination sperm for pigs is currently sent throughout Norway from a central plant in Hamar. Norsvin produces up to 3000 doses daily.

“This is production on an industrial scale where the sperm can be utilised on a large number of animals, and where each sperm and each piglet represents high values,” says Klinkenberg.

The next step will take place in the spring with insemination trials on larger animals. Around 1000 animals will be inseminated using the new method to see if better results are achieved than with today’s conventional methods.

“This is a completely new and revolutionary approach where the focus has been on controlling the processes that occur both before and after the insemination,” says Geno Research & Development Manager Elisabeth Kommisrud.

Aase Dragland | alfa
Further information:

Further reports about: SINTEF Uterus artificial insemination bull semen pigs sperm cells sperm population

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>